找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in VLSI Computer-Aided Design; Ibrahim (Abe) M. Elfadel,Duane S. Boning,Xin Li Book 2019 Springer Nature Switzerland AG 2

[復制鏈接]
查看: 8185|回復: 51
樓主
發(fā)表于 2025-3-21 17:04:08 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning in VLSI Computer-Aided Design
編輯Ibrahim (Abe) M. Elfadel,Duane S. Boning,Xin Li
視頻videohttp://file.papertrans.cn/621/620705/620705.mp4
概述Provides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability.Discusses the use of machine learn
圖書封面Titlebook: Machine Learning in VLSI Computer-Aided Design;  Ibrahim (Abe) M. Elfadel,Duane S. Boning,Xin Li Book 2019 Springer Nature Switzerland AG 2
描述.This book provides readers with an up-to-date account of the use of machine learning frameworks, methodologies, algorithms and techniques in the context of computer-aided design (CAD) for very-large-scale integrated circuits (VLSI). Coverage includes the various machine learning methods used in lithography, physical design, yield prediction, post-silicon performance analysis, reliability and failure analysis, power and thermal analysis, analog design, logic synthesis, verification, and neuromorphic design. .Provides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability;.Discusses the use of machine learning techniques in the context of analog and digital synthesis;.Demonstrates how to formulate VLSI CAD objectives as machine learning problems and provides a comprehensive treatment of their efficient solutions;.Discusses the tradeoff between the cost of collecting data and prediction accuracy and provides a methodology for using prior data to reduce cost of data collection in the design, testing and validation of both analog and digital VLSI designs...From the Foreword. .As the se
出版日期Book 2019
關鍵詞VLSI Design; VLSI Verification; VLSI Testing; VLSI Analog Circuits; CMOS VLSI Design
版次1
doihttps://doi.org/10.1007/978-3-030-04666-8
isbn_ebook978-3-030-04666-8
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Machine Learning in VLSI Computer-Aided Design影響因子(影響力)




書目名稱Machine Learning in VLSI Computer-Aided Design影響因子(影響力)學科排名




書目名稱Machine Learning in VLSI Computer-Aided Design網絡公開度




書目名稱Machine Learning in VLSI Computer-Aided Design網絡公開度學科排名




書目名稱Machine Learning in VLSI Computer-Aided Design被引頻次




書目名稱Machine Learning in VLSI Computer-Aided Design被引頻次學科排名




書目名稱Machine Learning in VLSI Computer-Aided Design年度引用




書目名稱Machine Learning in VLSI Computer-Aided Design年度引用學科排名




書目名稱Machine Learning in VLSI Computer-Aided Design讀者反饋




書目名稱Machine Learning in VLSI Computer-Aided Design讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:54:07 | 只看該作者
Ibrahim (Abe) M. Elfadel,Duane S. Boning,Xin LiProvides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability.Discusses the use of machine learn
板凳
發(fā)表于 2025-3-22 02:20:30 | 只看該作者
地板
發(fā)表于 2025-3-22 07:08:51 | 只看該作者
Springer Nature Switzerland AG 2019
5#
發(fā)表于 2025-3-22 11:46:16 | 只看該作者
A Preliminary Taxonomy for Machine Learning in VLSI CAD,ception. The purpose of this book is to bring to the interested reader a cross-section of the connections between existing and emerging machine learning methods and VLSI computer aided design (CAD). In this brief introduction, we begin with a high-level taxonomy of machine learning methods. We then
6#
發(fā)表于 2025-3-22 16:41:08 | 只看該作者
7#
發(fā)表于 2025-3-22 17:33:58 | 只看該作者
8#
發(fā)表于 2025-3-23 00:11:42 | 只看該作者
Machine Learning in Physical Verification, Mask Synthesis, and Physical Design as physical design, mask synthesis, and physical verification are critical to guarantee fast design closure and manufacturability. Recent advances in machine learning provide various new opportunities and approaches to tackle these challenges. This chapter will discuss several applications of machi
9#
發(fā)表于 2025-3-23 03:26:54 | 只看該作者
10#
發(fā)表于 2025-3-23 06:30:06 | 只看該作者
Machine Learning Approaches for IC Manufacturing Yield Enhancementinterest in machine learning and data mining techniques to improve yield to take advantage of this increasing volume of data. In this chapter, we introduce machine learning yield models for integrated circuit (IC) manufacturing yield enhancement. Challenges in this area include class imbalance due t
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 16:33
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
文成县| 观塘区| 正安县| 南乐县| 宿松县| 宁海县| 图片| 崇左市| 宜兰市| 红河县| 建瓯市| 彰化县| 宁远县| 宁德市| 博野县| 汝州市| 清河县| 泸溪县| 成安县| 于都县| 永靖县| 利辛县| 铜川市| 武邑县| 四会市| 高雄县| 五莲县| 会同县| 桂平市| 麻栗坡县| 奉化市| 遂昌县| 竹溪县| 泸定县| 太保市| 海淀区| 泰宁县| 莱西市| 宁波市| 寿光市| 仙游县|