找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Single-Cell RNA-seq Data Analysis; Khalid Raza Book 2024 The Editor(s) (if applicable) and The Author(s), under exclus

[復(fù)制鏈接]
查看: 47387|回復(fù): 39
樓主
發(fā)表于 2025-3-21 16:46:43 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning in Single-Cell RNA-seq Data Analysis
編輯Khalid Raza
視頻videohttp://file.papertrans.cn/621/620701/620701.mp4
概述Covers basic concepts of single cell RNA-seq.Discusses integration of ML and scRNA-seq.Presents hands-on examples and case studies
叢書名稱SpringerBriefs in Applied Sciences and Technology
圖書封面Titlebook: Machine Learning in Single-Cell RNA-seq Data Analysis;  Khalid Raza Book 2024 The Editor(s) (if applicable) and The Author(s), under exclus
描述.This book provides a concise guide tailored for researchers, bioinformaticians, and enthusiasts eager to unravel the mysteries hidden within single-cell RNA sequencing (scRNA-seq) data using cutting-edge machine learning techniques. The advent of scRNA-seq technology has revolutionized our understanding of cellular diversity and function, offering unprecedented insights into the intricate tapestry of gene expression at the single-cell level. However, the deluge of data generated by these experiments presents a formidable challenge, demanding advanced analytical tools, methodologies, and skills for meaningful interpretation. This book bridges the gap between traditional bioinformatics and the evolving landscape of machine learning. Authored by seasoned experts at the intersection of genomics and artificial intelligence, this book serves as a roadmap for leveraging machine learning algorithms to extract meaningful patterns and uncover hidden biological insights within scRNA-seq datasets.?.
出版日期Book 2024
關(guān)鍵詞Single Cell Data Analysis; Machine Learning in Genomics; Single Cell RNA-seq; Machine Learning in Singl
版次1
doihttps://doi.org/10.1007/978-981-97-6703-8
isbn_softcover978-981-97-6702-1
isbn_ebook978-981-97-6703-8Series ISSN 2191-530X Series E-ISSN 2191-5318
issn_series 2191-530X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Machine Learning in Single-Cell RNA-seq Data Analysis影響因子(影響力)




書目名稱Machine Learning in Single-Cell RNA-seq Data Analysis影響因子(影響力)學(xué)科排名




書目名稱Machine Learning in Single-Cell RNA-seq Data Analysis網(wǎng)絡(luò)公開度




書目名稱Machine Learning in Single-Cell RNA-seq Data Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning in Single-Cell RNA-seq Data Analysis被引頻次




書目名稱Machine Learning in Single-Cell RNA-seq Data Analysis被引頻次學(xué)科排名




書目名稱Machine Learning in Single-Cell RNA-seq Data Analysis年度引用




書目名稱Machine Learning in Single-Cell RNA-seq Data Analysis年度引用學(xué)科排名




書目名稱Machine Learning in Single-Cell RNA-seq Data Analysis讀者反饋




書目名稱Machine Learning in Single-Cell RNA-seq Data Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:53:01 | 只看該作者
2191-530X provides a concise guide tailored for researchers, bioinformaticians, and enthusiasts eager to unravel the mysteries hidden within single-cell RNA sequencing (scRNA-seq) data using cutting-edge machine learning techniques. The advent of scRNA-seq technology has revolutionized our understanding of c
板凳
發(fā)表于 2025-3-22 04:10:27 | 只看該作者
Dimensionality Reduction and Clustering,nderlying biological structures. The chapter details PCA and t-SNE algorithms, their applications, and software tools, providing Python-based case studies to demonstrate their practical implementation in scRNA-seq data analysis.
地板
發(fā)表于 2025-3-22 05:46:59 | 只看該作者
5#
發(fā)表于 2025-3-22 11:10:05 | 只看該作者
Introduction to Single-Cell RNA-seq Data Analysis, single-cell sequencing technologies, the critical impact of scRNA-seq, and the powerful role of machine learning in overcoming analytical challenges, thereby facilitating advancements in personalized medicine and targeted therapies.
6#
發(fā)表于 2025-3-22 14:26:22 | 只看該作者
7#
發(fā)表于 2025-3-22 18:12:20 | 只看該作者
8#
發(fā)表于 2025-3-22 23:50:41 | 只看該作者
9#
發(fā)表于 2025-3-23 01:25:40 | 只看該作者
10#
發(fā)表于 2025-3-23 09:11:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大宁县| 赤壁市| 云梦县| 南昌市| 离岛区| 新乡市| 沾益县| 新建县| 资阳市| 砚山县| 汶川县| 鄂托克旗| 景洪市| 花莲市| 本溪市| 漯河市| 安岳县| 若尔盖县| 建瓯市| 隆昌县| 大足县| 湛江市| 石楼县| 白水县| 揭西县| 苍南县| 留坝县| 冀州市| 紫金县| 册亨县| 桦川县| 临高县| 玉龙| 大悟县| 盐边县| 万山特区| 浦北县| 广南县| 金昌市| 大方县| 察隅县|