找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Radiation Oncology; Theory and Applicati Issam El Naqa,Ruijiang Li,Martin J. Murphy Book 20151st edition Springer Inter

[復(fù)制鏈接]
樓主: 我在爭斗志
41#
發(fā)表于 2025-3-28 16:12:52 | 只看該作者
Artificial Neural Networks to Emulate and Compensate Breathing Motion During Radiation Therapycan be trained to model individual breathing patterns. Neural networks have proven quite effective in this capacity. This chapter describes the nature of the motion-compensated treatment problem and the issues in using a neural network to handle it.
42#
發(fā)表于 2025-3-28 20:53:38 | 只看該作者
43#
發(fā)表于 2025-3-29 02:15:30 | 只看該作者
Informatics in Radiation Oncologyilable in digital formats, radiation treatment plan details, financial data, and multilevel multicenter databases, to name a few. Tools of various complexity for various goals are available. The following chapter aims to portray this domain and present a selection of available tools.
44#
發(fā)表于 2025-3-29 05:11:31 | 只看該作者
45#
發(fā)表于 2025-3-29 09:31:52 | 只看該作者
46#
發(fā)表于 2025-3-29 14:58:05 | 只看該作者
Computational Learning Theoryapacity of the algorithm selected, and under which conditions is successful learning possible or impossible. Practical methods for selecting proper model complexity are presented using techniques based on information theory and statistical resampling.
47#
發(fā)表于 2025-3-29 17:12:05 | 只看該作者
Image-Guided Radiotherapy with Machine Learning we will present and discuss automatic and semiautomatic methods for CT prostate segmentation in the IGRT workflow. In the last section, we will present our extension of some recently developed machine learning approaches to segment the prostate in MR images.
48#
發(fā)表于 2025-3-29 20:37:45 | 只看該作者
49#
發(fā)表于 2025-3-30 00:20:09 | 只看該作者
Treatment Planning Validatione technique was based on unsupervised machine learning, i.e., data clustering, and achieved over 90 % success rates in detecting outliers in over 1,000 treatment plans. Finally, future research directions in the clinical applications of machine learning for treatment planning validation will be briefly discussed.
50#
發(fā)表于 2025-3-30 07:41:21 | 只看該作者
Book 20151st editioniotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
揭东县| 昆山市| 富锦市| 黎城县| 宣城市| 贺州市| 宾川县| 治多县| 雷波县| 宜宾县| 大悟县| 伊春市| 新和县| 城口县| 吉安县| 临沂市| 盘锦市| 佛坪县| 崇阳县| 闻喜县| 揭阳市| 津南区| 宜阳县| 晋州市| 邯郸县| 建阳市| 漾濞| 连云港市| 铜川市| 颍上县| 开远市| 互助| 嘉定区| 峨眉山市| 锡林郭勒盟| 谢通门县| 大庆市| 高陵县| 陕西省| 德昌县| 凌云县|