找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Molecular Sciences; Chen Qu,Hanchao Liu Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive lic

[復(fù)制鏈接]
查看: 41601|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:20:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning in Molecular Sciences
編輯Chen Qu,Hanchao Liu
視頻videohttp://file.papertrans.cn/621/620699/620699.mp4
概述Comprehensive survey of machine learning in molecular sciences.Perspectives on challenges and future of machine learning in chemistry.Features contributions from experts in the field
叢書名稱Challenges and Advances in Computational Chemistry and Physics
圖書封面Titlebook: Machine Learning in Molecular Sciences;  Chen Qu,Hanchao Liu Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive lic
描述Machine learning and artificial intelligence have propelled research across various molecular science disciplines thanks to the rapid progress in computing hardware, algorithms, and data accumulation. This book presents recent machine learning applications in the broad research field of molecular sciences. Written by an international group of renowned experts, this edited volume covers both the machine learning methodologies and state-of-the-art machine learning applications in a wide range of topics in molecular sciences, from electronic structure theory to nuclear dynamics of small molecules, to the design and synthesis of large organic and biological molecules. This book is a valuable resource for researchers and students interested in applying machine learning in the research of molecular sciences.
出版日期Book 2023
關(guān)鍵詞Machine Learning; Molecular Sciences; Deep Learning; Artificial Intelligence; Graph Neural Networks; Voxe
版次1
doihttps://doi.org/10.1007/978-3-031-37196-7
isbn_softcover978-3-031-37198-1
isbn_ebook978-3-031-37196-7Series ISSN 2542-4491 Series E-ISSN 2542-4483
issn_series 2542-4491
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Machine Learning in Molecular Sciences影響因子(影響力)




書目名稱Machine Learning in Molecular Sciences影響因子(影響力)學(xué)科排名




書目名稱Machine Learning in Molecular Sciences網(wǎng)絡(luò)公開度




書目名稱Machine Learning in Molecular Sciences網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning in Molecular Sciences被引頻次




書目名稱Machine Learning in Molecular Sciences被引頻次學(xué)科排名




書目名稱Machine Learning in Molecular Sciences年度引用




書目名稱Machine Learning in Molecular Sciences年度引用學(xué)科排名




書目名稱Machine Learning in Molecular Sciences讀者反饋




書目名稱Machine Learning in Molecular Sciences讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:11:52 | 只看該作者
Machine Learning in Molecular Sciences978-3-031-37196-7Series ISSN 2542-4491 Series E-ISSN 2542-4483
板凳
發(fā)表于 2025-3-22 02:37:21 | 只看該作者
https://doi.org/10.1007/978-3-031-37196-7Machine Learning; Molecular Sciences; Deep Learning; Artificial Intelligence; Graph Neural Networks; Voxe
地板
發(fā)表于 2025-3-22 07:45:05 | 只看該作者
Development of Exchange-Correlation Functionals Assisted by Machine Learning,ation?functionals of density functional theory. In this chapter, we review how the ML tools are used for this and the performances achieved recently. It is revealed that the ML, not being opposed to the analytical methods, complements human intuition and advances the development of the first-principles calculation with desired accuracy.
5#
發(fā)表于 2025-3-22 09:34:15 | 只看該作者
Chen Qu,Hanchao LiuComprehensive survey of machine learning in molecular sciences.Perspectives on challenges and future of machine learning in chemistry.Features contributions from experts in the field
6#
發(fā)表于 2025-3-22 15:45:54 | 只看該作者
Challenges and Advances in Computational Chemistry and Physicshttp://image.papertrans.cn/m/image/620699.jpg
7#
發(fā)表于 2025-3-22 18:02:54 | 只看該作者
8#
發(fā)表于 2025-3-22 21:47:53 | 只看該作者
9#
發(fā)表于 2025-3-23 02:48:37 | 只看該作者
10#
發(fā)表于 2025-3-23 05:52:23 | 只看該作者
Development of Exchange-Correlation Functionals Assisted by Machine Learning,ation?functionals of density functional theory. In this chapter, we review how the ML tools are used for this and the performances achieved recently. It is revealed that the ML, not being opposed to the analytical methods, complements human intuition and advances the development of the first-princip
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岳阳县| 汉川市| 鸡泽县| 泰州市| 宁南县| 皮山县| 刚察县| 白玉县| 东宁县| 深州市| 横峰县| 广宗县| 白水县| 钦州市| 社旗县| 密云县| 永新县| 乌苏市| 时尚| 通山县| 广昌县| 邻水| 来宾市| 于田县| 奉化市| 获嘉县| 文化| 华亭县| 南华县| 忻州市| 武功县| 河东区| 湖口县| 卢龙县| 德阳市| 陇川县| 手游| 苍梧县| 台中市| 工布江达县| 化隆|