找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Medicine – A Complete Overview; Ton J. Cleophas,Aeilko H. Zwinderman Textbook 2020Latest edition Springer Nature Switz

[復(fù)制鏈接]
樓主: Stenosis
21#
發(fā)表于 2025-3-25 06:53:18 | 只看該作者
Ton J. Cleophas,Aeilko H. Zwindermanphases, pseudobinary systems, invariant equilibria, liquidus, solidus, and solvus surfaces, isothermal sections, temperature-composition sections, thermodynamics, materials properties and applications, and miscellanea. Finally, a detailed bibliography of all cited references is provided....In the pr
22#
發(fā)表于 2025-3-25 09:02:17 | 只看該作者
23#
發(fā)表于 2025-3-25 15:31:38 | 只看該作者
Machine Learning in Medicine – A Complete Overview978-3-030-33970-8
24#
發(fā)表于 2025-3-25 17:59:39 | 只看該作者
25#
發(fā)表于 2025-3-25 23:48:13 | 只看該作者
Online Analytical Procedure Cubes, a More Rapid Approach to Analyzing Frequencies (450 Patients)ubes. The cubes are designed in such a way that creating and viewing reports become easy. This chapter will assess whether online analytical procedures can be applied on health outcomes instead of business outcomes.
26#
發(fā)表于 2025-3-26 01:41:59 | 只看該作者
27#
發(fā)表于 2025-3-26 07:27:54 | 只看該作者
Trained Decision Trees for a More Meaningful Accuracy (150 Patients)y appropriate, because a decision tree is built from a data file, and, subsequently, the same data file is applied once more for computing the health risk probabilities from the built tree. Obviously, the accuracy must be close to 100%, because the test sample is 100% identical to the sample used fo
28#
發(fā)表于 2025-3-26 12:04:57 | 只看該作者
Typology of Medical Data (51 Patients)erg Germany, 2012), and Q-Q plots (Chap. . of current work), the typology of data and frequency procedures (to be reviewed in the Chaps. . and . of the current work) are a good way to start looking at your data. First, we will address the typology of the data.
29#
發(fā)表于 2025-3-26 15:08:51 | 只看該作者
Predictions from Nominal Clinical Data (450 Patients)es. They can be assessed with pie charts, frequency tables and bar charts. Statistical testing is not of much interest. Statistical testing becomes, however, interesting, if we want to know whether two nominal variables like treatment modality and treatment outcome are differently distributed betwee
30#
發(fā)表于 2025-3-26 20:48:31 | 只看該作者
Predictions from Ordinal Clinical Data (450 Patients)like severity scores, intelligence levels, physical strength scores. They are usually assessed with frequency tables and bar charts. Unlike scale data, that also have a stepping pattern, they do not necessarily have to have steps with equal intervals. Statistical testing is not of much interest. Sta
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马关县| 濮阳市| 分宜县| 平谷区| 吉首市| 永德县| 镇原县| 杂多县| 天镇县| 承德市| 额尔古纳市| 信阳市| 三穗县| 郁南县| 襄汾县| 屯门区| 米易县| 和林格尔县| 仙居县| 利辛县| 沙洋县| 新乐市| 香港 | 昌宁县| 泽州县| 墨玉县| 蓬莱市| 河北省| 徐闻县| 哈尔滨市| 巨鹿县| 潮安县| 齐齐哈尔市| 高阳县| 耒阳市| 衢州市| 贵定县| 稷山县| 衡阳市| 沁阳市| 金门县|