找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Medical Imaging; Second International Kenji Suzuki,Fei Wang,Pingkun Yan Conference proceedings 2011 Springer-Verlag Gmb

[復(fù)制鏈接]
查看: 39700|回復(fù): 63
樓主
發(fā)表于 2025-3-21 16:40:49 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Machine Learning in Medical Imaging
副標(biāo)題Second International
編輯Kenji Suzuki,Fei Wang,Pingkun Yan
視頻videohttp://file.papertrans.cn/621/620689/620689.mp4
概述State-of-the-art research.Fast-track conference proceedings.Unique visibility
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Machine Learning in Medical Imaging; Second International Kenji Suzuki,Fei Wang,Pingkun Yan Conference proceedings 2011 Springer-Verlag Gmb
描述This book constitutes the refereed proceedings of the Second International Workshop on Machine Learning in Medical Imaging, MLMI 2011, held in conjunction with MICCAI 2011, in Toronto, Canada, in September 2011. The 44 revised full papers presented were carefully reviewed and selected from 74 submissions. The papers focus on major trends in machine learning in medical imaging aiming to identify new cutting-edge techniques and their use in medical imaging.
出版日期Conference proceedings 2011
關(guān)鍵詞artificial neural network; computer assisted surgery; graphical model; multi-modality; support vector ma
版次1
doihttps://doi.org/10.1007/978-3-642-24319-6
isbn_softcover978-3-642-24318-9
isbn_ebook978-3-642-24319-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag GmbH Berlin Heidelberg 2011
The information of publication is updating

書(shū)目名稱(chēng)Machine Learning in Medical Imaging影響因子(影響力)




書(shū)目名稱(chēng)Machine Learning in Medical Imaging影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Machine Learning in Medical Imaging網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Machine Learning in Medical Imaging網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Machine Learning in Medical Imaging被引頻次




書(shū)目名稱(chēng)Machine Learning in Medical Imaging被引頻次學(xué)科排名




書(shū)目名稱(chēng)Machine Learning in Medical Imaging年度引用




書(shū)目名稱(chēng)Machine Learning in Medical Imaging年度引用學(xué)科排名




書(shū)目名稱(chēng)Machine Learning in Medical Imaging讀者反饋




書(shū)目名稱(chēng)Machine Learning in Medical Imaging讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:02:06 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:15:45 | 只看該作者
Conference proceedings 2011tion with MICCAI 2011, in Toronto, Canada, in September 2011. The 44 revised full papers presented were carefully reviewed and selected from 74 submissions. The papers focus on major trends in machine learning in medical imaging aiming to identify new cutting-edge techniques and their use in medical
地板
發(fā)表于 2025-3-22 05:32:44 | 只看該作者
A Locally Deformable Statistical Shape Model,o not need predefined segments. Smoothness constraints ensure that the local solution is restricted to the space of feasible shapes. Very promising results are obtained when we compare our new approach to a global fitting approach.
5#
發(fā)表于 2025-3-22 12:00:09 | 只看該作者
6#
發(fā)表于 2025-3-22 13:48:48 | 只看該作者
Segmentation of Skull Base Tumors from MRI Using a Hybrid Support Vector Machine-Based Method,ere used to train a binary SVC (BSVC). By the trained BSVC, the final tumor lesion was segmented out. This method was tested on 13 MR images data sets. Quantitative results suggested that the developed method achieved significantly higher segmentation accuracy than OSVC and BSVC.
7#
發(fā)表于 2025-3-22 18:55:24 | 只看該作者
Automatic Segmentation of Vertebrae from Radiographs: A Sample-Driven Active Shape Model Approach,ained by a conditional shape model, based on the variability of the coarse spine location estimates. The technique is evaluated on a data set of manually annotated lumbar radiographs. The results compare favorably to the previous work in automatic vertebra segmentation, in terms of both segmentation accuracy and failure rate.
8#
發(fā)表于 2025-3-22 21:47:34 | 只看該作者
Computer-Assisted Intramedullary Nailing Using Real-Time Bone Detection in 2D Ultrasound Images,alidation of the method has been done using US images of anterior femoral condyles from 9 healthy volunteers. To calculate the accuracy of the method, we compared our results to a manual segmentation performed by an expert. The Misclassification Error (ME) is between 0.10% and 0.26% and the average computation time was 0.10 second per image.
9#
發(fā)表于 2025-3-23 04:58:46 | 只看該作者
10#
發(fā)表于 2025-3-23 05:43:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴隆县| 南阳市| 偃师市| 五指山市| 那曲县| 疏附县| 武义县| 泗阳县| 合江县| 汨罗市| 蓬溪县| 当雄县| 丰宁| 民勤县| 广河县| 宣威市| 太白县| 德格县| 万安县| 土默特右旗| 孝感市| 怀安县| 陵水| 津市市| 昭苏县| 嘉祥县| 沿河| 利辛县| 曲靖市| 白朗县| 和龙市| 仁寿县| 广宗县| 邻水| 纳雍县| 共和县| 广南县| 承德市| 石景山区| 上犹县| 尤溪县|