找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Medical Imaging; 9th International Wo Yinghuan Shi,Heung-Il Suk,Mingxia Liu Conference proceedings 2018 Springer Nature

[復(fù)制鏈接]
查看: 43879|回復(fù): 64
樓主
發(fā)表于 2025-3-21 17:06:40 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning in Medical Imaging
副標題9th International Wo
編輯Yinghuan Shi,Heung-Il Suk,Mingxia Liu
視頻videohttp://file.papertrans.cn/621/620687/620687.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning in Medical Imaging; 9th International Wo Yinghuan Shi,Heung-Il Suk,Mingxia Liu Conference proceedings 2018 Springer Nature
描述This book constitutes the proceedings of the 9th International Workshop on Machine Learning in Medical Imaging, MLMI 2018, held in conjunction with MICCAI 2018 in Granada, Spain, in September 2018..The 45 papers presented in this volume were carefully reviewed and selected from 82 submissions. They focus on major trends and challenges in the area of machine learning in medical imaging and aim to identify new cutting-edge techniques and their use in medical imaging. .
出版日期Conference proceedings 2018
關(guān)鍵詞artificial intelligence; automatic segmentations; classification and regression trees; convolutional ne
版次1
doihttps://doi.org/10.1007/978-3-030-00919-9
isbn_softcover978-3-030-00918-2
isbn_ebook978-3-030-00919-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Machine Learning in Medical Imaging影響因子(影響力)




書目名稱Machine Learning in Medical Imaging影響因子(影響力)學(xué)科排名




書目名稱Machine Learning in Medical Imaging網(wǎng)絡(luò)公開度




書目名稱Machine Learning in Medical Imaging網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning in Medical Imaging被引頻次




書目名稱Machine Learning in Medical Imaging被引頻次學(xué)科排名




書目名稱Machine Learning in Medical Imaging年度引用




書目名稱Machine Learning in Medical Imaging年度引用學(xué)科排名




書目名稱Machine Learning in Medical Imaging讀者反饋




書目名稱Machine Learning in Medical Imaging讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:20:36 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:01:56 | 只看該作者
地板
發(fā)表于 2025-3-22 05:20:10 | 只看該作者
Conference proceedings 2018CCAI 2018 in Granada, Spain, in September 2018..The 45 papers presented in this volume were carefully reviewed and selected from 82 submissions. They focus on major trends and challenges in the area of machine learning in medical imaging and aim to identify new cutting-edge techniques and their use in medical imaging. .
5#
發(fā)表于 2025-3-22 10:01:17 | 只看該作者
6#
發(fā)表于 2025-3-22 16:51:13 | 只看該作者
7#
發(fā)表于 2025-3-22 17:21:21 | 只看該作者
8#
發(fā)表于 2025-3-22 23:42:20 | 只看該作者
Dynamic Multi-scale CNN Forest Learning for Automatic Cervical Cancer Segmentation,to the best of our knowledge, these have not been used for cervical tumor segmentation. More importantly, while the majority of innovative deep-learning works using convolutional neural networks (CNNs) focus on developing more sophisticated and robust architectures (e.g., ResNet, U-Net, GANs), there
9#
發(fā)表于 2025-3-23 05:27:06 | 只看該作者
Multi-task Fundus Image Quality Assessment via Transfer Learning and Landmarks Detection,, including image artifact, clarity, and field definition. In this paper, we propose a multi-task deep learning framework for automated assessment of fundus image quality. The network can classify whether an image is gradable, together with interpretable information about quality factors. The propos
10#
發(fā)表于 2025-3-23 07:25:42 | 只看該作者
End-to-End Lung Nodule Detection in Computed Tomography,ptimized for radiologists. Computer vision can capture features that is subtle to human observers, so it is desirable to design a CAD system operating on the raw data. In this paper, we proposed a deep-neural-network-based detection system for lung nodule detection in computed tomography (CT). A pri
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 04:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
米林县| 普安县| 巴里| 武汉市| 吴旗县| 合阳县| 万州区| 庄河市| 江孜县| 莒南县| 五常市| 彰武县| 应用必备| 台北市| 成武县| 宜君县| 田阳县| 文成县| 峡江县| 广东省| 呼玛县| 新营市| 邻水| 景德镇市| 岳普湖县| 贵州省| 章丘市| 韶关市| 水富县| 宿迁市| 湘潭市| 莱阳市| 康定县| 札达县| 石渠县| 金阳县| 秭归县| 绥宁县| 忻城县| 临澧县| 泸州市|