找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Medical Imaging; 7th International Wo Li Wang,Ehsan Adeli,Heung-Il Suk Conference proceedings 2016 Springer Internation

[復(fù)制鏈接]
樓主: deduce
21#
發(fā)表于 2025-3-25 04:44:04 | 只看該作者
Dual-Layer Groupwise Registration for Consistent Labeling of Longitudinal Brain Images,mical labeling methods that can respect temporal consistency between images. However, the characteristics of such longitudinal images and how they lodge into the image manifold are often neglected in existing labeling methods. Indeed, most of them independently align atlases to each target time-poin
22#
發(fā)表于 2025-3-25 10:47:06 | 只看該作者
,Joint Discriminative and Representative Feature Selection for Alzheimer’s Disease Diagnosis,d to AD progression, many feature selection methods have been proposed to identify informative features (.brain regions) to build an accurate prediction model. These methods mostly only focus on the feature-target relationship to select features which are discriminative to the targets (.diagnosis la
23#
發(fā)表于 2025-3-25 14:38:29 | 只看該作者
24#
發(fā)表于 2025-3-25 17:07:41 | 只看該作者
25#
發(fā)表于 2025-3-25 20:16:11 | 只看該作者
26#
發(fā)表于 2025-3-26 01:30:29 | 只看該作者
,Deep Ensemble Sparse Regression Network for Alzheimer’s Disease Diagnosis,small number of samples. In this paper, we propose a novel framework that utilizes sparse regression models as . learner and builds a deep convolutional neural network for clinical decision making. Specifically, we first train multiple sparse regression models, each of which has different values of
27#
發(fā)表于 2025-3-26 06:47:01 | 只看該作者
Learning Representation for Histopathological Image with Quaternion Grassmann Average Network,w unsupervised feature learning algorithm for images via a simple deep network architecture. However, PCA is sensitive to noise and outliers, which may depress the representation learning of PCANet. Grassmann averages (GA) is a newly proposed dimensionality reduction algorithm, which is more robust
28#
發(fā)表于 2025-3-26 09:09:51 | 只看該作者
29#
發(fā)表于 2025-3-26 12:45:19 | 只看該作者
30#
發(fā)表于 2025-3-26 18:35:03 | 只看該作者
Multi-label Deep Regression and Unordered Pooling for Holistic Interstitial Lung Disease Pattern Deolutions rely on manually provided regions of interest, limiting their clinical usefulness. In addition, no work has yet focused on predicting more than one ILD from the same CT slice, despite the frequency of such occurrences. To address these limitations, we propose two variations of multi-label d
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 18:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长乐市| 泾源县| 桃江县| 道孚县| 丁青县| 鄱阳县| 陈巴尔虎旗| 虹口区| 永福县| 兴安盟| 山丹县| 漳浦县| 屯昌县| 元阳县| 铜鼓县| 家居| 阳江市| 青铜峡市| 紫金县| 绥江县| 偏关县| 腾冲县| 囊谦县| 山西省| 沁阳市| 弥渡县| 垣曲县| 都昌县| 龙门县| 楚雄市| 茂名市| 牡丹江市| 腾冲县| 化州市| 张家界市| 绵阳市| 禄丰县| 江永县| 辽中县| 泾川县| 腾冲县|