找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Medical Imaging; 13th International W Chunfeng Lian,Xiaohuan Cao,Zhiming Cui Conference proceedings 2022 Springer Natur

[復(fù)制鏈接]
樓主: Dangle
31#
發(fā)表于 2025-3-27 00:46:32 | 只看該作者
32#
發(fā)表于 2025-3-27 03:47:41 | 只看該作者
Linkai Peng,Li Lin,Pujin Cheng,Huaqing He,Xiaoying Tangs of aging research for some time. For example, the mTOR pathway, a regulator of translation and protein synthesis, has been identified as a common longevity pathway in yeast and Caenorhabditis elegans. In mamm978-1-61779-747-7978-1-60327-507-1
33#
發(fā)表于 2025-3-27 06:41:30 | 只看該作者
Ken C. L. Wong,Mehdi Moradis of aging research for some time. For example, the mTOR pathway, a regulator of translation and protein synthesis, has been identified as a common longevity pathway in yeast and Caenorhabditis elegans. In mamm978-1-61779-747-7978-1-60327-507-1
34#
發(fā)表于 2025-3-27 13:26:38 | 只看該作者
35#
發(fā)表于 2025-3-27 13:45:55 | 只看該作者
36#
發(fā)表于 2025-3-27 19:48:35 | 只看該作者
37#
發(fā)表于 2025-3-28 02:00:14 | 只看該作者
,Function MRI Representation Learning via?Self-supervised Transformer for?Automated Brain Disorder Asonance imaging (rs-fMRI) has been used to capture abnormality or dysfunction functional connectivity networks for automated MDD detection. A functional connectivity network (FCN) of each subject derived from rs-fMRI data can be modeled as a graph consisting of nodes and edges. Graph neural networks
38#
發(fā)表于 2025-3-28 04:28:06 | 只看該作者
,Predicting Age-related Macular Degeneration Progression with?Longitudinal Fundus Images Using Deep e. While existing risk prediction models for progression to late AMD are useful for triaging patients, none utilizes longitudinal color fundus photographs (CFPs) in a patient’s history to estimate the risk of late AMD in a given subsequent time interval. In this work, we seek to evaluate how deep ne
39#
發(fā)表于 2025-3-28 07:39:47 | 只看該作者
,Region-Guided Channel-Wise Attention Network for?Accelerated MRI Reconstruction,rs its development in time-critical applications. In recent years, deep learning-based methods leverage the powerful representations of neural networks to recover high-quality MR images from undersampled measurements, which shortens the acquisition process and enables accelerated MRI scanning. Despi
40#
發(fā)表于 2025-3-28 11:24:32 | 只看該作者
,Student Becomes Decathlon Master in?Retinal Vessel Segmentation via?Dual-Teacher Multi-target Domaiributions. However, most of them only focus on single-target domain adaptation and cannot be applied to the scenario with multiple target domains. In this paper, we propose RVms, a novel unsupervised multi-target domain adaptation approach to segment retinal vessels (RVs) from multimodal and multice
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 01:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
朝阳县| 雅江县| 五河县| 宁强县| 台中县| 屯留县| 鹤岗市| 邓州市| 兴宁市| 灌阳县| 威海市| 瑞金市| 来安县| 启东市| 普洱| 行唐县| 翁源县| 泗水县| 呼玛县| 永仁县| 乡城县| 汤原县| 尉犁县| 六枝特区| 舒城县| 宁夏| 祁门县| 瓮安县| 马龙县| 阿图什市| 贺州市| 商都县| 报价| 芦溪县| 唐海县| 雅江县| 乌兰浩特市| 云浮市| 云霄县| 洛南县| 闻喜县|