找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Medical Imaging; 12th International W Chunfeng Lian,Xiaohuan Cao,Pingkun Yan Conference proceedings 2021 Springer Natur

[復(fù)制鏈接]
樓主: NK871
51#
發(fā)表于 2025-3-30 09:52:19 | 只看該作者
Learning Transferable 3D-CNN for MRI-Based Brain Disorder Classification from Scratch: An Empirical the . of 3D-CNNs to the transferability, and verify that fine-tuning CNNs can significantly enhance the transferability. This is different from the previous finding that fine-tuning CNNs (pretrained on ImageNet) cannot improve the model transferability in 2D medical image analysis. (3) We also stud
52#
發(fā)表于 2025-3-30 15:23:20 | 只看該作者
53#
發(fā)表于 2025-3-30 18:41:58 | 只看該作者
Interpretable Histopathology Image Diagnosis via Whole Tissue Slide Level Supervision,atch automatically. More importantly, visualization of weight for each patch in a WSI demonstrates that our approach matches the concerns of pathologists. Furthermore, extensive experiments demonstrate the superiority of the interpretable dual encoder network.
54#
發(fā)表于 2025-3-30 21:20:09 | 只看該作者
Variational Encoding and Decoding for Hybrid Supervision of Registration Network,ns can be simulated to serve as the ground-truth for supervised learning of registration. By working alternatively with the conventional unsupervised training, our registration network can better adapt to shape variability and yield accurate and consistent deformations. Experiments on 3D brain magne
55#
發(fā)表于 2025-3-31 03:48:41 | 只看該作者
56#
發(fā)表于 2025-3-31 08:03:32 | 只看該作者
57#
發(fā)表于 2025-3-31 10:35:45 | 只看該作者
58#
發(fā)表于 2025-3-31 14:26:05 | 只看該作者
Learning Structure from Visual Semantic Features and Radiology Ontology for Lymph Node Classificatidel on a T2 MRI image dataset with 821 samples and 14 types of lymph nodes. Although this dataset is very unbalanced on different types of lymph nodes, our model shows promising classification results on this challenging datasets compared to several state of art methods.
59#
發(fā)表于 2025-3-31 18:00:10 | 只看該作者
60#
發(fā)表于 2025-3-31 22:17:37 | 只看該作者
StairwayGraphNet for Inter- and Intra-modality Multi-resolution Brain Graph Alignment and Synthesis on a given modality and super-resolve brain graphs in both inter and intra domains. Our SG-Net is grounded in three main contributions: (i) predicting a target graph from a source one based on a novel graph generative adversarial network in both inter (e.g., morphological-functional) and intra (e.g
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 15:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阜新市| 平安县| 宁波市| 青海省| 鲁甸县| 柳州市| 鸡泽县| 牡丹江市| 九江市| 乐安县| 诸城市| 依安县| 崇礼县| 平邑县| 无锡市| 松江区| 凯里市| 老河口市| 长沙县| 祥云县| 旺苍县| 宁安市| 苍溪县| 庄浪县| 垦利县| 滦南县| 都江堰市| 武川县| 融水| 凯里市| 平凉市| 应城市| 正蓝旗| 湘潭市| 儋州市| 图木舒克市| 聂荣县| 星座| 孝义市| 牡丹江市| 金湖县|