找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Medical Imaging; 11th International W Mingxia Liu,Pingkun Yan,Xiaohuan Cao Conference proceedings 2020 Springer Nature

[復(fù)制鏈接]
查看: 55173|回復(fù): 62
樓主
發(fā)表于 2025-3-21 18:22:53 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning in Medical Imaging
副標題11th International W
編輯Mingxia Liu,Pingkun Yan,Xiaohuan Cao
視頻videohttp://file.papertrans.cn/621/620677/620677.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning in Medical Imaging; 11th International W Mingxia Liu,Pingkun Yan,Xiaohuan Cao Conference proceedings 2020 Springer Nature
描述.This book constitutes the proceedings of the 11th International Workshop on Machine Learning in Medical Imaging, MLMI 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic...The 68 papers presented in this volume were carefully reviewed and selected from 101 submissions. They focus on major trends and challenges in the above-mentioned area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt with are: deep learning, generative adversarial learning, ensemble learning, sparse learning, multi-task learning, multi-view learning, manifold learning, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc..
出版日期Conference proceedings 2020
關(guān)鍵詞artificial intelligence; automatic segmentations; bioinformatics; cellular image analysis; computer visi
版次1
doihttps://doi.org/10.1007/978-3-030-59861-7
isbn_softcover978-3-030-59860-0
isbn_ebook978-3-030-59861-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Machine Learning in Medical Imaging影響因子(影響力)




書目名稱Machine Learning in Medical Imaging影響因子(影響力)學科排名




書目名稱Machine Learning in Medical Imaging網(wǎng)絡(luò)公開度




書目名稱Machine Learning in Medical Imaging網(wǎng)絡(luò)公開度學科排名




書目名稱Machine Learning in Medical Imaging被引頻次




書目名稱Machine Learning in Medical Imaging被引頻次學科排名




書目名稱Machine Learning in Medical Imaging年度引用




書目名稱Machine Learning in Medical Imaging年度引用學科排名




書目名稱Machine Learning in Medical Imaging讀者反饋




書目名稱Machine Learning in Medical Imaging讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:29:37 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:45:14 | 只看該作者
A Novel fMRI Representation Learning Framework with GAN,the mapping between mind and brain. The proposed framework is evaluated on Human Connectome Project (HCP) task functional MRI (tfMRI) data. This novel framework proves that GAN can learn meaningful representations of tfMRI and promises better understanding of the brain function.
地板
發(fā)表于 2025-3-22 05:43:54 | 只看該作者
3D Segmentation Networks for Excessive Numbers of Classes: Distinct Bone Segmentation in Upper Bodimodifications in network architecture, loss function, and data augmentation. As a result, we demonstrate the robustness of our method by automatically segmenting over one hundred distinct bones simultaneously in an end-to-end learnt fashion from a CT-scan.
5#
發(fā)表于 2025-3-22 09:18:35 | 只看該作者
6#
發(fā)表于 2025-3-22 16:42:53 | 只看該作者
Segmentation to Label: Automatic Coronary Artery Labeling from Mask Parcellation,orrespondingly. Finally, a self-contained loss is proposed to supervise labeling process. At experiment section, we conduct comprehensive experiments on collected 526 CCTA scans and exhibit stable and promising results.
7#
發(fā)表于 2025-3-22 17:35:29 | 只看該作者
8#
發(fā)表于 2025-3-22 21:47:30 | 只看該作者
9#
發(fā)表于 2025-3-23 02:50:50 | 只看該作者
10#
發(fā)表于 2025-3-23 05:45:05 | 只看該作者
Error Attention Interactive Segmentation of Medical Image Through Matting and Fusion,e automatic segmentation to get higher accuracy for clinical use. Current methods usually transform user clicks to geodesic distance hint maps as guidance, then concatenate them with the raw image and coarse segmentation, and feed them into a refinement network. Such methods are insufficient in refi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 15:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
朝阳县| 衡山县| 涟源市| 东乌珠穆沁旗| 宽甸| 攀枝花市| 东方市| 遵化市| 霍山县| 越西县| 尉犁县| 金秀| 屯昌县| 县级市| 石河子市| 友谊县| 阿拉善盟| 陇南市| 尚义县| 墨玉县| 夏河县| 吉安县| 临汾市| 平陆县| 迁西县| 竹溪县| 寻甸| 绿春县| 乐安县| 合水县| 惠来县| 太谷县| 若尔盖县| 博野县| 绵竹市| 永清县| 上虞市| 会宁县| 建瓯市| 雷州市| 合水县|