找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Medical Imaging; 4th International Wo Guorong Wu,Daoqiang Zhang,Fei Wang Conference proceedings 2013 Springer Internati

[復(fù)制鏈接]
樓主: 自治
41#
發(fā)表于 2025-3-28 14:43:29 | 只看該作者
Unsupervised Deep Learning for Hippocampus Segmentation in 7.0 Tesla MR Images,ew characteristics shown in 7.0T images, such as richer structural information and more severe intensity inhomogeneity, raise serious issues for the extraction of distinctive and robust features for accurately segmenting hippocampus in 7.0T images. On the other hand, the hand-crafted image features
42#
發(fā)表于 2025-3-28 20:19:50 | 只看該作者
Integrating Multiple Network Properties for MCI Identification,. However, most of the existing methods focus on using only single network property, although combination of multiple network properties such as local connectivity and topological properties may be more powerful. Employing the kernel-based method, we propose a novel classification framework that att
43#
發(fā)表于 2025-3-29 01:10:11 | 只看該作者
Learning-Boosted Label Fusion for Multi-atlas Auto-Segmentation,ation (ABAS) methods have shown great promise for getting accurate segmentation results especially when multiple atlases are used. In this work, we aim to further improve the performance of ABAS by integrating it with learning-based segmentation techniques. In particular, the Random Forests (RF) sup
44#
發(fā)表于 2025-3-29 06:42:51 | 只看該作者
Volumetric Segmentation of Key Fetal Brain Structures in 3D Ultrasound,y has an advantage of quick acquisition but is yet to demonstrate improvements in clinical workflow. In this paper we propose an automatic technique to segment four important fetal brain structures in 3D ultrasound. The technique is built within a Random Decision Forests framework. Our solution incl
45#
發(fā)表于 2025-3-29 09:22:11 | 只看該作者
Sparse Classification with MRI Based Markers for Neuromuscular Disease Categorization,e Imaging (MRI) data. Anatomically meaningful features are extracted from structural data (T1- and T2-weighted MR images) and Diffusion Tensor Imaging (DTI) data, and used to train a new machine learning algorithm, the .-support SVM (.sup-SVM). The .-support regularized SVM has an inherent feature s
46#
發(fā)表于 2025-3-29 11:31:49 | 只看該作者
47#
發(fā)表于 2025-3-29 16:11:50 | 只看該作者
48#
發(fā)表于 2025-3-29 22:10:02 | 只看該作者
49#
發(fā)表于 2025-3-30 01:04:58 | 只看該作者
50#
發(fā)表于 2025-3-30 07:57:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 09:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
卓尼县| 山丹县| 大新县| 绥滨县| 汤阴县| 娄烦县| 呼伦贝尔市| 宜兴市| 周口市| 襄樊市| 宝应县| 长治市| 兴安盟| 襄垣县| 庆云县| 通化市| 清徐县| 定安县| 巴林左旗| 云阳县| 新丰县| 象山县| 兴义市| 泰州市| 吉安县| 阳城县| 揭阳市| 双辽市| 勃利县| 安多县| 华安县| 吴堡县| 枣强县| 长海县| 江陵县| 德兴市| 长宁区| 潼关县| 昌宁县| 南部县| 商城县|