找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Medical Imaging; 14th International W Xiaohuan Cao,Xuanang Xu,Xi Ouyang Conference proceedings 2024 The Editor(s) (if a

[復(fù)制鏈接]
樓主: Adentitious
11#
發(fā)表于 2025-3-23 11:43:22 | 只看該作者
,unORANIC: Unsupervised Orthogonalization of?Anatomy and?Image-Characteristic Features,features. The method is versatile for diverse modalities and tasks, as it does not require domain knowledge, paired data samples, or labels. During test time unORANIC is applied to potentially corrupted images, orthogonalizing their anatomy and characteristic components, to subsequently reconstruct
12#
發(fā)表于 2025-3-23 15:22:23 | 只看該作者
13#
發(fā)表于 2025-3-23 21:07:17 | 只看該作者
,Towards Abdominal 3-D Scene Rendering from?Laparoscopy Surgical Videos Using NeRFs,To overcome the visual constraints associated with laparoscopy, the use of laparoscopic images and videos to reconstruct the three-dimensional (3-D) anatomical structure of the abdomen has proven to be a promising approach. Neural Radiance Fields (NeRFs) have recently gained attention thanks to thei
14#
發(fā)表于 2025-3-24 01:55:28 | 只看該作者
15#
發(fā)表于 2025-3-24 05:30:30 | 只看該作者
,Accelerated MRI Reconstruction via?Dynamic Deformable Alignment Based Transformer,pressed sensing methods were developed. Parallel imaging acquires multiple anatomy views simultaneously, while compressed sensing acquires fewer samples than traditional methods. However, reconstructing images from undersampled multi-coil data remains challenging. Existing methods concatenate input
16#
發(fā)表于 2025-3-24 10:10:38 | 只看該作者
,Deformable Cross-Attention Transformer for?Medical Image Registration, registration. Recent advancements in designing registration Transformers have focused on using cross-attention (CA) to enable a more precise understanding of spatial correspondences between moving and fixed images. Here, we propose a novel CA mechanism that computes windowed attention using deforma
17#
發(fā)表于 2025-3-24 14:36:57 | 只看該作者
,Deformable Medical Image Registration Under Distribution Shifts with?Neural Instance Optimization,iations in anatomy and contrast changes with different imaging protocols. Gradient descent-based instance optimization is often introduced to refine the solution of deep-learning methods, but the performance gain is minimal due to the high degree of freedom in the solution and the absence of robust
18#
發(fā)表于 2025-3-24 15:14:24 | 只看該作者
19#
發(fā)表于 2025-3-24 22:49:25 | 只看該作者
BHSD: A 3D Multi-class Brain Hemorrhage Segmentation Dataset,ors. Identifying, localizing and quantifying ICH has important clinical implications, in a bleed-dependent manner. While deep learning techniques are widely used in medical image segmentation and have been applied to the ICH segmentation task, existing public ICH datasets do not support the multi-cl
20#
發(fā)表于 2025-3-25 02:20:57 | 只看該作者
,Contrastive Learning-Based Breast Tumor Segmentation in?DCE-MRI,tative morphological and functional information, thereby assisting subsequent diagnosis and treatment. However, many existing methods mainly focus on features within tumor regions and neglect enhanced background tissues, leading to the potential over-segmentation problem. To better distinguish tumor
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 02:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遵义市| 峨眉山市| 襄汾县| 安陆市| 峨眉山市| 卓尼县| 莆田市| 乳源| 襄汾县| 金昌市| 白沙| 江油市| 雷山县| 韶关市| 麻栗坡县| 永清县| 武胜县| 信阳市| 盘山县| 和田市| 滨州市| 张家口市| 阿坝县| 乌拉特前旗| 南丰县| 衡水市| 临安市| 岳普湖县| 冷水江市| 隆尧县| 紫金县| 和平区| 四会市| 虞城县| 长沙市| 武胜县| 汝南县| 长沙市| 丽水市| 金乡县| 大英县|