找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Finance; From Theory to Pract Matthew F. Dixon,Igor Halperin,Paul Bilokon Textbook 2020 Springer Nature Switzerland AG

[復(fù)制鏈接]
查看: 14939|回復(fù): 50
樓主
發(fā)表于 2025-3-21 19:07:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning in Finance
副標(biāo)題From Theory to Pract
編輯Matthew F. Dixon,Igor Halperin,Paul Bilokon
視頻videohttp://file.papertrans.cn/621/620671/620671.mp4
概述Introduces fundamental concepts in machine learning for canonical modeling and decision frameworks in finance.Presents a unified treatment of machine learning, financial econometrics and discrete time
圖書封面Titlebook: Machine Learning in Finance; From Theory to Pract Matthew F. Dixon,Igor Halperin,Paul Bilokon Textbook 2020 Springer Nature Switzerland AG
描述.This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance...Machine Learning in Finance: From Theory to Practice.?is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesianand frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. T
出版日期Textbook 2020
關(guān)鍵詞Machine Learning; Financial Mathematics; Financial Econometrics; Neural Networks; Bayesian Neural Networ
版次1
doihttps://doi.org/10.1007/978-3-030-41068-1
isbn_softcover978-3-030-41070-4
isbn_ebook978-3-030-41068-1
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Machine Learning in Finance影響因子(影響力)




書目名稱Machine Learning in Finance影響因子(影響力)學(xué)科排名




書目名稱Machine Learning in Finance網(wǎng)絡(luò)公開度




書目名稱Machine Learning in Finance網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning in Finance被引頻次




書目名稱Machine Learning in Finance被引頻次學(xué)科排名




書目名稱Machine Learning in Finance年度引用




書目名稱Machine Learning in Finance年度引用學(xué)科排名




書目名稱Machine Learning in Finance讀者反饋




書目名稱Machine Learning in Finance讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:07:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:27:14 | 只看該作者
地板
發(fā)表于 2025-3-22 05:02:47 | 只看該作者
Textbook 2020al disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources a
5#
發(fā)表于 2025-3-22 09:40:48 | 只看該作者
6#
發(fā)表于 2025-3-22 15:18:51 | 只看該作者
7#
發(fā)表于 2025-3-22 18:48:04 | 只看該作者
8#
發(fā)表于 2025-3-22 21:15:55 | 只看該作者
9#
發(fā)表于 2025-3-23 03:23:37 | 只看該作者
10#
發(fā)表于 2025-3-23 05:44:51 | 只看該作者
Bayesian Regression and Gaussian Processesrning methods—specifically Gaussian process regression, an important class of Bayesian machine learning methods—and demonstrate their application to “surrogate” models of derivative prices. This chapter also provides a natural starting point from which to develop intuition for the role and functiona
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 19:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石泉县| 乌拉特中旗| 灵山县| 福贡县| 大关县| 乌兰察布市| 台湾省| 敦煌市| 临清市| 冷水江市| 贺州市| 长汀县| 宁国市| 柏乡县| 双柏县| 高州市| 彭泽县| 息烽县| 东乡县| 米泉市| 宁海县| 溆浦县| 台中市| 石楼县| 上饶县| 叙永县| 河东区| 齐河县| 台东市| 高青县| 屯昌县| 名山县| 襄城县| 元阳县| 吴旗县| 土默特右旗| 石嘴山市| 红原县| 潮州市| 柳林县| 阿克|