找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Clinical Neuroimaging; 4th International Wo Ahmed Abdulkadir,Seyed Mostafa Kia,Thomas Wolfers Conference proceedings 20

[復(fù)制鏈接]
查看: 50836|回復(fù): 63
樓主
發(fā)表于 2025-3-21 17:06:49 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning in Clinical Neuroimaging
副標(biāo)題4th International Wo
編輯Ahmed Abdulkadir,Seyed Mostafa Kia,Thomas Wolfers
視頻videohttp://file.papertrans.cn/621/620659/620659.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning in Clinical Neuroimaging; 4th International Wo Ahmed Abdulkadir,Seyed Mostafa Kia,Thomas Wolfers Conference proceedings 20
描述This book constitutes the refereed proceedings of the 4th International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2021, held on September 27, 2021, in conjunction with MICCAI 2021. The workshop was held virtually due to the COVID-19 pandemic.?.The 17 papers presented in this book were carefully reviewed and selected from 27 submissions. They were organized in topical sections named: computational anatomy and brain networks and time series...
出版日期Conference proceedings 2021
關(guān)鍵詞artificial intelligence; bioinformatics; brain mapping; clinical neuroimaging; computational anatomy; com
版次1
doihttps://doi.org/10.1007/978-3-030-87586-2
isbn_softcover978-3-030-87585-5
isbn_ebook978-3-030-87586-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Machine Learning in Clinical Neuroimaging影響因子(影響力)




書目名稱Machine Learning in Clinical Neuroimaging影響因子(影響力)學(xué)科排名




書目名稱Machine Learning in Clinical Neuroimaging網(wǎng)絡(luò)公開度




書目名稱Machine Learning in Clinical Neuroimaging網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning in Clinical Neuroimaging被引頻次




書目名稱Machine Learning in Clinical Neuroimaging被引頻次學(xué)科排名




書目名稱Machine Learning in Clinical Neuroimaging年度引用




書目名稱Machine Learning in Clinical Neuroimaging年度引用學(xué)科排名




書目名稱Machine Learning in Clinical Neuroimaging讀者反饋




書目名稱Machine Learning in Clinical Neuroimaging讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:14:41 | 只看該作者
Distinguishing Healthy Ageing from?Dementia: A Biomechanical Simulation of?Brain Atrophy Using Deep eep learning framework for hyper-elastic strain modelling of brain atrophy, during healthy ageing and in Alzheimer’s Disease. The framework directly models the effects of age, disease status, and scan interval to regress regional patterns of atrophy, from which a strain-based model estimates deforma
板凳
發(fā)表于 2025-3-22 02:42:27 | 只看該作者
地板
發(fā)表于 2025-3-22 07:21:39 | 只看該作者
Patch vs. Global Image-Based Unsupervised Anomaly Detection in MR Brain Scans of Early Parkinsonian btle tasks such as the identification of barely visible brain lesions, especially given the lack of annotated datasets. Good candidate approaches are patch-based unsupervised pipelines which have both the advantage to increase the number of input data and to capture local and fine anomaly patterns d
5#
發(fā)表于 2025-3-22 10:43:07 | 只看該作者
MRI Image Registration Considerably Improves CNN-Based Disease Classificationsonance imaging (MRI) brain scans. These scans usually undergo several preprocessing steps, including image registration. However, the effect of image registration methods on the performance of the machine learning classifier is poorly understood. In this study, we train a convolutional neural netwo
6#
發(fā)表于 2025-3-22 14:48:00 | 只看該作者
7#
發(fā)表于 2025-3-22 17:19:42 | 只看該作者
8#
發(fā)表于 2025-3-22 22:22:53 | 只看該作者
PialNN: A Fast Deep Learning Framework for Cortical Pial Surface Reconstructione introduce Pial Neural Network (PialNN), a 3D deep learning framework for pial surface reconstruction. PialNN is trained end-to-end to deform an initial white matter surface to a target pial surface by a sequence of learned deformation blocks. A local convolutional operation is incorporated in each
9#
發(fā)表于 2025-3-23 04:03:23 | 只看該作者
10#
發(fā)表于 2025-3-23 09:09:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 00:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
襄城县| 吉首市| 昌邑市| 白城市| 正定县| 丹凤县| 彝良县| 延吉市| 福安市| 屯门区| 南郑县| 连云港市| 扎赉特旗| 江源县| 宝丰县| 四子王旗| 甘南县| 从江县| 安达市| 乌兰县| 盐城市| 安岳县| 安平县| 南昌市| 崇左市| 贵州省| 临夏市| 灯塔市| 来安县| 卢氏县| 锡林郭勒盟| 丰原市| 西乌珠穆沁旗| 阿坝县| 双城市| 蒙阴县| 遂溪县| 尼玛县| 花莲市| 娱乐| 碌曲县|