找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Aquaculture; Hunger Classificatio Mohd Azraai Mohd Razman,Anwar P. P. Abdul Majeed,Y Book 2020 The Author(s), under exc

[復(fù)制鏈接]
查看: 35098|回復(fù): 37
樓主
發(fā)表于 2025-3-21 16:06:40 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning in Aquaculture
副標(biāo)題Hunger Classificatio
編輯Mohd Azraai Mohd Razman,Anwar P. P. Abdul Majeed,Y
視頻videohttp://file.papertrans.cn/621/620657/620657.mp4
概述Highlights the fundamental association between aquaculture and engineering in classifying fish hunger behaviour by means of machine learning techniques.Discusses the underlying factors that contribute
叢書名稱SpringerBriefs in Applied Sciences and Technology
圖書封面Titlebook: Machine Learning in Aquaculture; Hunger Classificatio Mohd Azraai Mohd Razman,Anwar P. P. Abdul Majeed,Y Book 2020 The Author(s), under exc
描述.This book highlights the fundamental association between aquaculture and engineering in classifying fish hunger behaviour by means of machine learning techniques. Understanding the underlying factors that affect fish growth is essential, since they have implications for higher productivity in fish farms. Computer vision and machine learning techniques make it possible to quantify the subjective perception of hunger behaviour and so allow food to be provided as necessary. The book analyses the conceptual framework of motion tracking, feeding schedule and prediction classifiers in order to classify the hunger state, and proposes a system comprising an automated feeder system, image-processing module, as well as machine learning classifiers. Furthermore, the system substitutes conventional, complex modelling techniques with a robust, artificial intelligence approach. The findings presented are of interest to researchers, fish farmers, and aquaculture technologist wanting to gain insights into the productivity of fish and fish behaviour..
出版日期Book 2020
關(guān)鍵詞Hunger behaviour of fish; Image processing module; Fish growth; Computer vision; Motion tracking; Machine
版次1
doihttps://doi.org/10.1007/978-981-15-2237-6
isbn_softcover978-981-15-2236-9
isbn_ebook978-981-15-2237-6Series ISSN 2191-530X Series E-ISSN 2191-5318
issn_series 2191-530X
copyrightThe Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2020
The information of publication is updating

書目名稱Machine Learning in Aquaculture影響因子(影響力)




書目名稱Machine Learning in Aquaculture影響因子(影響力)學(xué)科排名




書目名稱Machine Learning in Aquaculture網(wǎng)絡(luò)公開度




書目名稱Machine Learning in Aquaculture網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning in Aquaculture被引頻次




書目名稱Machine Learning in Aquaculture被引頻次學(xué)科排名




書目名稱Machine Learning in Aquaculture年度引用




書目名稱Machine Learning in Aquaculture年度引用學(xué)科排名




書目名稱Machine Learning in Aquaculture讀者反饋




書目名稱Machine Learning in Aquaculture讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:16:03 | 只看該作者
SpringerBriefs in Applied Sciences and Technologyhttp://image.papertrans.cn/m/image/620657.jpg
板凳
發(fā)表于 2025-3-22 00:34:16 | 只看該作者
Concluding Remarks,g any vital information, including the feeding time, the feeder cause between the hungry and the happy, and the most relevant, extracting the notable features of the fish movement behaviours across the test. The contribution and future work shall be drawn up in conjunction with the goals reached in this report.
地板
發(fā)表于 2025-3-22 06:03:39 | 只看該作者
5#
發(fā)表于 2025-3-22 12:15:05 | 只看該作者
6#
發(fā)表于 2025-3-22 14:42:54 | 只看該作者
Machine Learning in Aquaculture978-981-15-2237-6Series ISSN 2191-530X Series E-ISSN 2191-5318
7#
發(fā)表于 2025-3-22 17:24:11 | 只看該作者
Image Processing Features Extraction on Fish Behaviour,ely the discriminant analysis (DA), support vector machine (SVM) and .-nearest neighbour (.-NN). The outcome in this chapter will validate the features from image processing as a tool for identifying the behavioural changes of the fish in school size.
8#
發(fā)表于 2025-3-22 21:54:38 | 只看該作者
Time-Series Identification on Fish Feeding Behaviour,max rotation. The details were then categorized using support vector machine (SVM), K-NN and random forest tree (RF) classifiers. The best identification accuracy was shown with eight described features in the varimax-based PCA. The forecast results based on the K-NN model built on selected data cha
9#
發(fā)表于 2025-3-23 02:34:39 | 只看該作者
f needs and preferences prevents him from explaining cooperation as a voluntary and spontaneous social phenomenon. In conclusion, the chapter maintains that less formal approaches to needs and preferences are imperative in light of the climate and ecological crises and allow us to examine the pros a
10#
發(fā)表于 2025-3-23 07:18:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 14:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富川| 广宁县| 石嘴山市| 蕉岭县| 南丹县| 鄯善县| 柏乡县| 宜都市| 竹北市| 大兴区| 浪卡子县| 广平县| 千阳县| 弥勒县| 扶绥县| 庆安县| 南汇区| 罗江县| 张家港市| 巴林右旗| 关岭| 光泽县| 喀什市| 霍州市| 唐河县| 油尖旺区| 华安县| 阜宁县| 綦江县| 疏附县| 连南| 大宁县| 乌拉特中旗| 南漳县| 分宜县| 泽州县| 海淀区| 通道| 渑池县| 东丽区| 尖扎县|