找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Practical Decision Making; A Multidisciplinary Christo El Morr,Manar Jammal,Walid EI-Hallak Textbook 2022 The Editor(

[復(fù)制鏈接]
查看: 20750|回復(fù): 55
樓主
發(fā)表于 2025-3-21 18:07:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning for Practical Decision Making
副標(biāo)題A Multidisciplinary
編輯Christo El Morr,Manar Jammal,Walid EI-Hallak
視頻videohttp://file.papertrans.cn/621/620648/620648.mp4
概述Provides real life examples in healthcare and business.Designed for novice reader with no technical background.Uses a hands-on approach that allows the reader to acquire a set of practical machine lea
叢書名稱International Series in Operations Research & Management Science
圖書封面Titlebook: Machine Learning for Practical Decision Making; A Multidisciplinary  Christo El Morr,Manar Jammal,Walid EI-Hallak Textbook 2022 The Editor(
描述.This book provides a hands-on introduction to Machine Learning (ML) from a multidisciplinary perspective?that does not require?a background in data science or computer science. It explains ML using simple language and a straightforward approach guided by real-world examples in areas such as health informatics, information technology, and business analytics.?The book will help readers understand the various key algorithms, major software tools, and their applications. Moreover, through examples from the healthcare and business analytics fields, it demonstrates how and when ML can help them make better decisions in their disciplines...The book is chiefly intended for undergraduate and graduate students who are taking an introductory course in machine learning. It will also benefit data analysts and anyone interested in learning ML approaches..
出版日期Textbook 2022
關(guān)鍵詞Machine Learning; Decision Making; Healthcare; Engineering; Business Analytics
版次1
doihttps://doi.org/10.1007/978-3-031-16990-8
isbn_ebook978-3-031-16990-8Series ISSN 0884-8289 Series E-ISSN 2214-7934
issn_series 0884-8289
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Machine Learning for Practical Decision Making影響因子(影響力)




書目名稱Machine Learning for Practical Decision Making影響因子(影響力)學(xué)科排名




書目名稱Machine Learning for Practical Decision Making網(wǎng)絡(luò)公開度




書目名稱Machine Learning for Practical Decision Making網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning for Practical Decision Making被引頻次




書目名稱Machine Learning for Practical Decision Making被引頻次學(xué)科排名




書目名稱Machine Learning for Practical Decision Making年度引用




書目名稱Machine Learning for Practical Decision Making年度引用學(xué)科排名




書目名稱Machine Learning for Practical Decision Making讀者反饋




書目名稱Machine Learning for Practical Decision Making讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:21:33 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:16:38 | 只看該作者
Boosting and Stacking,The ensemble technique relies on an aggregate of models’ output to provide a better prediction. Other than voting and bagging, we can use boosting and stacking.
地板
發(fā)表于 2025-3-22 07:36:28 | 只看該作者
Decision Trees, label the instance as belonging to a class. The decision tree is our first approach to solve classification problems. However, decision trees can perform regression too, hence their name classification and regression trees (CART). The random forests that we will encounter in a later chapter are powerful variations of CART.
5#
發(fā)表于 2025-3-22 12:16:58 | 只看該作者
,Na?ve Bayes,uld be a yes or no with certainty. The situation with Bayesian modeling for decision-making is different—it estimates the probability that an instance belongs to a certain class, which is more nuanced [1].
6#
發(fā)表于 2025-3-22 13:19:51 | 只看該作者
Neural Networks,simply neural networks, are effective in solving complex problems, i.e., in modeling complex nonlinear functions. ANN. model the functioning of the brain’s neurons; ANN can be trained to “l(fā)earn” how to recognize patterns and classify data [1].
7#
發(fā)表于 2025-3-22 17:10:59 | 只看該作者
8#
發(fā)表于 2025-3-23 00:41:08 | 只看該作者
9#
發(fā)表于 2025-3-23 04:33:19 | 只看該作者
10#
發(fā)表于 2025-3-23 07:07:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 01:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尚义县| 布尔津县| 泸溪县| 宾阳县| 兴文县| 安顺市| 高淳县| 教育| 龙南县| 余庆县| 宁远县| 宿松县| 霞浦县| 长乐市| 南安市| 伽师县| 名山县| 仪征市| 平江县| 隆回县| 普宁市| 大足县| 顺昌县| 沛县| 达拉特旗| 吉木萨尔县| 柳林县| 晋中市| 宁蒗| 广汉市| 上思县| 高青县| 尚义县| 建瓯市| 壤塘县| 莲花县| 鄯善县| 蓬莱市| 瓮安县| 房产| 宁国市|