找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Networking; First International éric Renault,Paul Mühlethaler,Selma Boumerdassi Conference proceedings 2019 Springer

[復(fù)制鏈接]
樓主: 熱情美女
31#
發(fā)表于 2025-3-27 00:55:30 | 只看該作者
Energy-Based Connected Dominating Set for Data Aggregation for Intelligent Wireless Sensor Networksted way based on predefined energy constraints, it represents an intelligent fault tolerance mechanism to maintain our network and to deal with packet loss. The simulation results show that our proposed method outperforms existing methods.
32#
發(fā)表于 2025-3-27 03:13:38 | 只看該作者
LSTM Recurrent Neural Network (RNN) for Anomaly Detection in Cellular Mobile Networks,ithm. We have applied DNN (Deep Neural Network) to generate a profile on KPI features from historical data. It gave us deeper insight into how the cell is performing over time and can connect with the root causes or hidden fault of a major failure in the cellular network.
33#
發(fā)表于 2025-3-27 08:41:52 | 只看該作者
34#
發(fā)表于 2025-3-27 10:09:23 | 只看該作者
35#
發(fā)表于 2025-3-27 14:32:53 | 只看該作者
36#
發(fā)表于 2025-3-27 19:38:11 | 只看該作者
Conference proceedings 2019s; Distributed and decentralized machine learning algorithms; Intelligent cloud-support communications, resource allocation, energy-aware/green communications, software defined networks, cooperative networks, positioning and navigation systems, wireless communications, wireless sensor networks, underwater sensor networks..
37#
發(fā)表于 2025-3-27 23:58:24 | 只看該作者
38#
發(fā)表于 2025-3-28 04:49:36 | 只看該作者
Towards Analysing Cooperative Intelligent Transport System Security Data,tor servers, smartphone applications. These amounts of data can be exploited and analysed in order to extract pertinent information as driver profiles, abnormal driving behaviours, etc. In this paper, we present a methodology for analysis of data provided by a real experimentation of a cooperative i
39#
發(fā)表于 2025-3-28 08:36:26 | 只看該作者
Towards a Statistical Approach for User Classification in Twitter,inguish the patterns of users from those of organizations and individuals. The ability of distinguishing between the two account types is needed for developing recommendation engines, consumer products opinion mining tools, and information dissemination platforms. However, such a task is non-trivial
40#
發(fā)表于 2025-3-28 13:21:23 | 只看該作者
RILNET: A Reinforcement Learning Based Load Balancing Approach for Datacenter Networks,balancing mechanism which is widely used in?today’s datacenters, can balance load poorly and lead to congestion. Variety of load balancing schemes are proposed to address the problems of ECMP. However, these traditional schemes usually make load balancing decision only based on network knowledge for
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泸水县| 刚察县| 双牌县| 依安县| 长武县| 霍州市| 安溪县| 泽州县| 隆昌县| 高唐县| 木兰县| 惠水县| 闻喜县| 石首市| 家居| 古丈县| 沈阳市| 旺苍县| 定襄县| 兰溪市| 隆德县| 松原市| 巴南区| 九台市| 湘潭市| 德令哈市| 乌海市| 建始县| 静宁县| 广昌县| 电白县| 屏山县| 鄂托克前旗| 左云县| 金门县| 白山市| 五原县| 商都县| 平利县| 巴林右旗| 平和县|