找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Networking; First International éric Renault,Paul Mühlethaler,Selma Boumerdassi Conference proceedings 2019 Springer

[復(fù)制鏈接]
樓主: 熱情美女
31#
發(fā)表于 2025-3-27 00:55:30 | 只看該作者
Energy-Based Connected Dominating Set for Data Aggregation for Intelligent Wireless Sensor Networksted way based on predefined energy constraints, it represents an intelligent fault tolerance mechanism to maintain our network and to deal with packet loss. The simulation results show that our proposed method outperforms existing methods.
32#
發(fā)表于 2025-3-27 03:13:38 | 只看該作者
LSTM Recurrent Neural Network (RNN) for Anomaly Detection in Cellular Mobile Networks,ithm. We have applied DNN (Deep Neural Network) to generate a profile on KPI features from historical data. It gave us deeper insight into how the cell is performing over time and can connect with the root causes or hidden fault of a major failure in the cellular network.
33#
發(fā)表于 2025-3-27 08:41:52 | 只看該作者
34#
發(fā)表于 2025-3-27 10:09:23 | 只看該作者
35#
發(fā)表于 2025-3-27 14:32:53 | 只看該作者
36#
發(fā)表于 2025-3-27 19:38:11 | 只看該作者
Conference proceedings 2019s; Distributed and decentralized machine learning algorithms; Intelligent cloud-support communications, resource allocation, energy-aware/green communications, software defined networks, cooperative networks, positioning and navigation systems, wireless communications, wireless sensor networks, underwater sensor networks..
37#
發(fā)表于 2025-3-27 23:58:24 | 只看該作者
38#
發(fā)表于 2025-3-28 04:49:36 | 只看該作者
Towards Analysing Cooperative Intelligent Transport System Security Data,tor servers, smartphone applications. These amounts of data can be exploited and analysed in order to extract pertinent information as driver profiles, abnormal driving behaviours, etc. In this paper, we present a methodology for analysis of data provided by a real experimentation of a cooperative i
39#
發(fā)表于 2025-3-28 08:36:26 | 只看該作者
Towards a Statistical Approach for User Classification in Twitter,inguish the patterns of users from those of organizations and individuals. The ability of distinguishing between the two account types is needed for developing recommendation engines, consumer products opinion mining tools, and information dissemination platforms. However, such a task is non-trivial
40#
發(fā)表于 2025-3-28 13:21:23 | 只看該作者
RILNET: A Reinforcement Learning Based Load Balancing Approach for Datacenter Networks,balancing mechanism which is widely used in?today’s datacenters, can balance load poorly and lead to congestion. Variety of load balancing schemes are proposed to address the problems of ECMP. However, these traditional schemes usually make load balancing decision only based on network knowledge for
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
诸暨市| 嘉鱼县| 喀喇| 开封市| 达州市| 拜城县| 库伦旗| 康马县| 尖扎县| 南陵县| 竹山县| 富平县| 漳平市| 慈利县| 平湖市| 九龙坡区| 深水埗区| 万源市| 蓬溪县| 安远县| 内丘县| 高碑店市| 信丰县| 灌云县| 隆尧县| 田林县| 丹凤县| 平舆县| 玛沁县| 山西省| 侯马市| 皮山县| 东城区| 塘沽区| 肥乡县| 化德县| 宣城市| 石狮市| 安义县| 界首市| 嫩江县|