找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Multimedia Content Analysis; Yihong Gong,Wei Xu Book 2007 Springer-Verlag US 2007 DOM.Dimensionsreduktion.Gong.Hidden

[復(fù)制鏈接]
查看: 24316|回復(fù): 47
樓主
發(fā)表于 2025-3-21 16:58:19 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning for Multimedia Content Analysis
編輯Yihong Gong,Wei Xu
視頻videohttp://file.papertrans.cn/621/620634/620634.mp4
概述First book dedicated to the multimedia community to address unique problems and interesting applications of machine learning in this area.Includes examples of unsupervised learning, generative models
叢書名稱Multimedia Systems and Applications
圖書封面Titlebook: Machine Learning for Multimedia Content Analysis;  Yihong Gong,Wei Xu Book 2007 Springer-Verlag US 2007 DOM.Dimensionsreduktion.Gong.Hidden
描述.Challenges in complexity and variability of multimedia data have led to revolutions in machine learning techniques. Multimedia data, such as digital images, audio streams and motion video programs, exhibit richer structures than simple, isolated data items. A number of pixels in a digital image collectively conveys certain visual content to viewers. A TV video program consists of both audio and image streams that unfold the underlying story.? To recognize the visual content of a digital image, or to understand the underlying story of a video program, we may need to label sets of pixels or groups of image and audio frames jointly...Machine Learning for Multimedia Content Analysis. introduces machine learning techniques that are particularly powerful and effective for modeling spatial, temporal structures of multimedia data and for accomplishing common tasks of multimedia content analysis. This book systematically covers these techniques in an intuitive fashion and demonstrates their applications through case studies. This?volume uses a large number of figures to illustrate and visualize complex concepts, and provides insights into the characteristics of many algorithms through exam
出版日期Book 2007
關(guān)鍵詞DOM; Dimensionsreduktion; Gong; Hidden Markov Model; Machine Learning; Maximum Margin Markov (M3) network
版次1
doihttps://doi.org/10.1007/978-0-387-69942-4
isbn_softcover978-1-4419-4353-8
isbn_ebook978-0-387-69942-4Series ISSN 1568-2358 Series E-ISSN 2945-5715
issn_series 1568-2358
copyrightSpringer-Verlag US 2007
The information of publication is updating

書目名稱Machine Learning for Multimedia Content Analysis影響因子(影響力)




書目名稱Machine Learning for Multimedia Content Analysis影響因子(影響力)學(xué)科排名




書目名稱Machine Learning for Multimedia Content Analysis網(wǎng)絡(luò)公開度




書目名稱Machine Learning for Multimedia Content Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning for Multimedia Content Analysis被引頻次




書目名稱Machine Learning for Multimedia Content Analysis被引頻次學(xué)科排名




書目名稱Machine Learning for Multimedia Content Analysis年度引用




書目名稱Machine Learning for Multimedia Content Analysis年度引用學(xué)科排名




書目名稱Machine Learning for Multimedia Content Analysis讀者反饋




書目名稱Machine Learning for Multimedia Content Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:26:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:05:46 | 只看該作者
地板
發(fā)表于 2025-3-22 05:18:32 | 只看該作者
Inference and Learning for General Graphical ModelsIn previous chapters, we described several probabilistic models that capture certain structures of the given data. In this chapter, we will see that these models are all under a general umbrella called probabilistic graphical models.
5#
發(fā)表于 2025-3-22 11:59:37 | 只看該作者
6#
發(fā)表于 2025-3-22 16:05:35 | 只看該作者
Machine Learning for Multimedia Content Analysis978-0-387-69942-4Series ISSN 1568-2358 Series E-ISSN 2945-5715
7#
發(fā)表于 2025-3-22 20:54:03 | 只看該作者
8#
發(fā)表于 2025-3-22 21:56:36 | 只看該作者
1568-2358 cludes examples of unsupervised learning, generative models .Challenges in complexity and variability of multimedia data have led to revolutions in machine learning techniques. Multimedia data, such as digital images, audio streams and motion video programs, exhibit richer structures than simple, is
9#
發(fā)表于 2025-3-23 02:23:34 | 只看該作者
10#
發(fā)表于 2025-3-23 07:42:29 | 只看該作者
Markov Chains and Monte Carlo Simulationbution and associated theorems. At the end of this chapter, we present the Markov Chain Monte Carlo simulation (MCMC) that is one of the most important applications of Markov chains for probabilistic data sampling and model estimations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开远市| 班戈县| 筠连县| 富顺县| 奉化市| 黄石市| 福泉市| 北川| 西青区| 金华市| 怀仁县| 额济纳旗| 南陵县| 天祝| 佛坪县| 平和县| 松原市| 双柏县| 乐平市| 东乡族自治县| 灌南县| 手游| 惠水县| 博乐市| 鄱阳县| 班戈县| 伊宁市| 临汾市| 鄄城县| 北碚区| 施秉县| 南充市| 大名县| 鹤壁市| 九江市| 泸水县| 汪清县| 永新县| 双流县| 鄄城县| 韶山市|