找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Model Order Reduction; Khaled Salah Mohamed Book 2018 Springer International Publishing AG 2018 Model Order Reduction

[復(fù)制鏈接]
查看: 42030|回復(fù): 39
樓主
發(fā)表于 2025-3-21 16:14:38 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning for Model Order Reduction
編輯Khaled Salah Mohamed
視頻videohttp://file.papertrans.cn/621/620633/620633.mp4
概述Introduces machine learning algorithms at the architecture level and the algorithm levels of abstraction.Describes new, hybrid solutions for model order reduction.Presents machine learning algorithms
圖書封面Titlebook: Machine Learning for Model Order Reduction;  Khaled Salah Mohamed Book 2018 Springer International Publishing AG 2018 Model Order Reduction
描述This Book discusses machine learning for model order reduction, which can be used in modern VLSI design to predict the behavior of an electronic circuit, via mathematical models that predict behavior.? The author describes techniques to reduce significantly the time required for simulations involving large-scale ordinary differential equations, which sometimes take several days or even weeks.? This method is called model order reduction (MOR), which reduces the complexity of the original large system and generates a reduced-order model (ROM) to represent the original one.? Readers will gain in-depth knowledge of machine learning and model order reduction concepts, the tradeoffs involved with using various algorithms, and how to apply the techniques presented to circuit simulations and numerical analysis..Introduces machine learning algorithms at the architecture level and the algorithm levels of abstraction;.Describes new, hybrid solutions for model order reduction;.Presents machine learning algorithms in depth, but simply;.Uses real, industrial applications to verify algorithms..
出版日期Book 2018
關(guān)鍵詞Model Order Reduction Techniques in VLSI Design; Circuit simulation; Machine learning for circuit simu
版次1
doihttps://doi.org/10.1007/978-3-319-75714-8
isbn_softcover978-3-030-09307-5
isbn_ebook978-3-319-75714-8
copyrightSpringer International Publishing AG 2018
The information of publication is updating

書目名稱Machine Learning for Model Order Reduction影響因子(影響力)




書目名稱Machine Learning for Model Order Reduction影響因子(影響力)學(xué)科排名




書目名稱Machine Learning for Model Order Reduction網(wǎng)絡(luò)公開度




書目名稱Machine Learning for Model Order Reduction網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning for Model Order Reduction被引頻次




書目名稱Machine Learning for Model Order Reduction被引頻次學(xué)科排名




書目名稱Machine Learning for Model Order Reduction年度引用




書目名稱Machine Learning for Model Order Reduction年度引用學(xué)科排名




書目名稱Machine Learning for Model Order Reduction讀者反饋




書目名稱Machine Learning for Model Order Reduction讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:47:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:51:21 | 只看該作者
sbereiche bringen. Dafür sei auf die gro?en Standardwerke wie beispielsweise die "Psychiatrie der Gegenwart" oder auf franz?sische und angels?chsische Handbücher verwiesen. Vielmehr liegt das Hauptgewicht auf definitorischen Abgren- zungen im Sinne eines Gerüstes, das auf Vollst?ndigkeit in der Aufz?hlung des978-3-642-96154-0
地板
發(fā)表于 2025-3-22 05:59:59 | 只看該作者
Book 2018chniques presented to circuit simulations and numerical analysis..Introduces machine learning algorithms at the architecture level and the algorithm levels of abstraction;.Describes new, hybrid solutions for model order reduction;.Presents machine learning algorithms in depth, but simply;.Uses real, industrial applications to verify algorithms..
5#
發(fā)表于 2025-3-22 11:15:42 | 只看該作者
Introduction,ms. Solving linear ODEs results in matrix form system that can be solved using direct method such as Gaussian elimination method or indirect method (iterative methods) such as Jacobi method, and solving nonlinear ODEs can be done by Newton’s method. These methods are useful for moderately sized prob
6#
發(fā)表于 2025-3-22 13:22:46 | 只看該作者
7#
發(fā)表于 2025-3-22 18:04:01 | 只看該作者
8#
發(fā)表于 2025-3-22 21:48:52 | 只看該作者
9#
發(fā)表于 2025-3-23 01:30:23 | 只看該作者
10#
發(fā)表于 2025-3-23 05:32:28 | 只看該作者
Book 2018it, via mathematical models that predict behavior.? The author describes techniques to reduce significantly the time required for simulations involving large-scale ordinary differential equations, which sometimes take several days or even weeks.? This method is called model order reduction (MOR), wh
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 02:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伊金霍洛旗| 莆田市| 昭苏县| 马公市| 兴和县| 彰武县| 黑水县| 壶关县| 界首市| 兰考县| 上林县| 临朐县| 仙桃市| 罗定市| 翁源县| 泾阳县| 平陆县| 南皮县| 长治市| 清新县| 济阳县| 本溪市| 昌平区| 凌海市| 会泽县| 吉首市| 金湖县| 白玉县| 伊宁市| 道孚县| 中卫市| 万安县| 成都市| 新沂市| 庆城县| 昆山市| 肥城市| 犍为县| 沙雅县| 河曲县| 台东市|