找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Medical Image Reconstruction; First International Florian Knoll,Andreas Maier,Daniel Rueckert Conference proceedings

[復(fù)制鏈接]
樓主: cobble
41#
發(fā)表于 2025-3-28 15:02:32 | 只看該作者
42#
發(fā)表于 2025-3-28 19:13:49 | 只看該作者
43#
發(fā)表于 2025-3-29 01:40:37 | 只看該作者
44#
發(fā)表于 2025-3-29 04:02:41 | 只看該作者
Magnetic Resonance Fingerprinting Reconstruction via Spatiotemporal Convolutional Neural Networksstructs parametric maps using dictionary matching, which lacks scalability due to computational inefficiency. We propose to perform MRF map reconstruction using a spatiotemporal convolutional neural network, which exploits the relationship between neighboring MRF signal evolutions to replace the dic
45#
發(fā)表于 2025-3-29 08:02:27 | 只看該作者
46#
發(fā)表于 2025-3-29 15:26:31 | 只看該作者
Joint Motion Estimation and Segmentation from Undersampled Cardiac MR Imagem undersampled .-space data. However, if the main purpose is to extract certain quantitative measures from the images, perfect reconstructions may not always be necessary as long as the images enable the means of extracting the clinically relevant measures. In this paper, we work on jointly predicti
47#
發(fā)表于 2025-3-29 16:04:12 | 只看該作者
Bayesian Deep Learning for Accelerated MR Image Reconstruction been focussing on . the behaviour of deep networks, such as investigating when the networks may fail to reconstruct. In this work, we explore the applicability of Bayesian DL techniques to model the uncertainty associated with DL-based reconstructions. In particular, we apply MC-dropout and heteros
48#
發(fā)表于 2025-3-29 20:26:17 | 只看該作者
Sparse-View CT Reconstruction Using Wasserstein GANsersarial networks (wGAN). Our wGAN optimizes the 2D CT image reconstruction by utilizing an adversarial loss to improve the perceived image quality as well as an . content loss to enforce structural similarity to the target image. We evaluate our wGANs using different weight factors between the two
49#
發(fā)表于 2025-3-30 02:14:56 | 只看該作者
Detecting Anatomical Landmarks for Motion Estimation in Weight-Bearing Imaging of Kneeso severe artifacts in reconstructions. In knee imaging, a state-of-the-art approach to compensate for patient motion uses fiducial markers attached to the skin. However, marker placement is a tedious and time consuming procedure for both, the physician and the patient. In this manuscript we investig
50#
發(fā)表于 2025-3-30 06:00:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 12:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大洼县| 河曲县| 奉新县| 台湾省| 同仁县| 双辽市| 和林格尔县| 武隆县| 泸西县| 交城县| 博白县| 通河县| 扎鲁特旗| 石家庄市| 武邑县| 五莲县| 石屏县| 海丰县| 永顺县| 漳浦县| 汝州市| 唐河县| 始兴县| 西藏| 彭山县| 尼木县| 施秉县| 兴山县| 天台县| 淅川县| 榕江县| 绩溪县| 宁化县| 康乐县| 阳谷县| 垣曲县| 墨脱县| 阳山县| 宁陕县| 铜鼓县| 临沭县|