找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Medical Image Reconstruction; Second International Florian Knoll,Andreas Maier,Jong Chul Ye Conference proceedings 201

[復制鏈接]
查看: 17133|回復: 52
樓主
發(fā)表于 2025-3-21 20:06:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning for Medical Image Reconstruction
副標題Second International
編輯Florian Knoll,Andreas Maier,Jong Chul Ye
視頻videohttp://file.papertrans.cn/621/620627/620627.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning for Medical Image Reconstruction; Second International Florian Knoll,Andreas Maier,Jong Chul Ye Conference proceedings 201
描述.This book constitutes the refereed proceedings of the Second International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019...The 24 full papers presented were carefully reviewed and selected from 32 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging; deep learning for computed tomography; and deep learning for general image reconstruction..
出版日期Conference proceedings 2019
關鍵詞artificial intelligence; bioinformatics; computer vision; deep learning; image analysis; image processing
版次1
doihttps://doi.org/10.1007/978-3-030-33843-5
isbn_softcover978-3-030-33842-8
isbn_ebook978-3-030-33843-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Machine Learning for Medical Image Reconstruction影響因子(影響力)




書目名稱Machine Learning for Medical Image Reconstruction影響因子(影響力)學科排名




書目名稱Machine Learning for Medical Image Reconstruction網(wǎng)絡公開度




書目名稱Machine Learning for Medical Image Reconstruction網(wǎng)絡公開度學科排名




書目名稱Machine Learning for Medical Image Reconstruction被引頻次




書目名稱Machine Learning for Medical Image Reconstruction被引頻次學科排名




書目名稱Machine Learning for Medical Image Reconstruction年度引用




書目名稱Machine Learning for Medical Image Reconstruction年度引用學科排名




書目名稱Machine Learning for Medical Image Reconstruction讀者反饋




書目名稱Machine Learning for Medical Image Reconstruction讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:13:44 | 只看該作者
Self-supervised Recurrent Neural Network for 4D Abdominal and In-utero MR Imagingsparsely selected 2D images using integrated reconstruction and total variation loss. We evaluate the classification accuracy on 5 simulated images and compare our results with the SVR method in adult abdominal and in-utero MRI scans. The results show that the proposed pipeline can accurately estima
板凳
發(fā)表于 2025-3-22 03:55:56 | 只看該作者
地板
發(fā)表于 2025-3-22 06:31:59 | 只看該作者
APIR-Net: Autocalibrated Parallel Imaging Reconstruction Using a Neural Networkinear relations between sampled and unsampled positions in k-space. The proposed method was compared to the start-of-the-art ESPIRiT and RAKI methods in terms of noise amplification and visual image quality in both phantom and in-vivo experiments. The experiments indicate that APIR-Net provides a pr
5#
發(fā)表于 2025-3-22 08:51:07 | 只看該作者
6#
發(fā)表于 2025-3-22 16:49:34 | 只看該作者
7#
發(fā)表于 2025-3-22 20:53:44 | 只看該作者
Modeling and Analysis Brain Development via Discriminative Dictionary Learningrs(ADMM). The effectiveness of the proposed approach is tested on brain age prediction problems by exploring the cortical status, and the experiments are conducted on the PING dataset. The proposed approach produces competitive results. Further, we were able for the first time to capture the status
8#
發(fā)表于 2025-3-22 23:58:11 | 只看該作者
9#
發(fā)表于 2025-3-23 01:35:40 | 只看該作者
10#
發(fā)表于 2025-3-23 06:20:50 | 只看該作者
Deep Learning Based Metal Inpainting in the Projection Domain: Initial Results. The network architectures show promising inpainting results with smooth transitions with the non-metal areas of the images and thus homogeneous image impressions. Furthermore, this paper shows that providing additional input data to the network, in form of a metal mask, increases the inpainting pe
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 14:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
景宁| 抚远县| 盐亭县| 竹溪县| 图木舒克市| 左贡县| 新野县| 武山县| 睢宁县| 聂拉木县| 宜宾县| 通河县| 武隆县| 孟津县| 阜新| 宁阳县| 明溪县| 台安县| 逊克县| 神木县| 忻州市| 广州市| 衡阳市| 宝鸡市| 南康市| 静海县| 故城县| 明溪县| 浠水县| 沿河| 武平县| 南雄市| 东方市| 绿春县| 正宁县| 巴林右旗| 偃师市| 上犹县| 开封县| 扬中市| 中超|