找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Intelligent Multimedia Analytics; Techniques and Appli Pardeep Kumar,Amit Kumar Singh Book 2021 Springer Nature Singap

[復(fù)制鏈接]
查看: 24735|回復(fù): 56
樓主
發(fā)表于 2025-3-21 19:50:34 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning for Intelligent Multimedia Analytics
副標題Techniques and Appli
編輯Pardeep Kumar,Amit Kumar Singh
視頻videohttp://file.papertrans.cn/621/620625/620625.mp4
概述Presents applications of machine learning techniques in processing multimedia large-scale data.Discusses new challenges faced by researchers in dealing with multimedia data.Provides innovative solutio
叢書名稱Studies in Big Data
圖書封面Titlebook: Machine Learning for Intelligent Multimedia Analytics; Techniques and Appli Pardeep Kumar,Amit Kumar Singh Book 2021 Springer Nature Singap
描述.This book presents applications of machine learning techniques in processing multimedia large-scale data. Multimedia such as text, image, audio, video, and graphics stands as one of the most demanding and exciting aspects of the information era. The book discusses new challenges faced by researchers in dealing with these large-scale data and also presents innovative solutions to address several potential research problems, e.g., enabling comprehensive visual classification to fill the semantic gap by exploring large-scale data, offering a promising frontier for detailed multimedia understanding, as well as extract patterns and making effective decisions by analyzing the large collection of data..
出版日期Book 2021
關(guān)鍵詞Multimedia Analytics; Big Data; IoT; Healthcare; Urban Computing; Digital Forensics; Security and Privacy;
版次1
doihttps://doi.org/10.1007/978-981-15-9492-2
isbn_softcover978-981-15-9494-6
isbn_ebook978-981-15-9492-2Series ISSN 2197-6503 Series E-ISSN 2197-6511
issn_series 2197-6503
copyrightSpringer Nature Singapore Pte Ltd. 2021
The information of publication is updating

書目名稱Machine Learning for Intelligent Multimedia Analytics影響因子(影響力)




書目名稱Machine Learning for Intelligent Multimedia Analytics影響因子(影響力)學科排名




書目名稱Machine Learning for Intelligent Multimedia Analytics網(wǎng)絡(luò)公開度




書目名稱Machine Learning for Intelligent Multimedia Analytics網(wǎng)絡(luò)公開度學科排名




書目名稱Machine Learning for Intelligent Multimedia Analytics被引頻次




書目名稱Machine Learning for Intelligent Multimedia Analytics被引頻次學科排名




書目名稱Machine Learning for Intelligent Multimedia Analytics年度引用




書目名稱Machine Learning for Intelligent Multimedia Analytics年度引用學科排名




書目名稱Machine Learning for Intelligent Multimedia Analytics讀者反饋




書目名稱Machine Learning for Intelligent Multimedia Analytics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:30:23 | 只看該作者
Studies in Big Datahttp://image.papertrans.cn/m/image/620625.jpg
板凳
發(fā)表于 2025-3-22 03:48:29 | 只看該作者
地板
發(fā)表于 2025-3-22 07:46:58 | 只看該作者
5#
發(fā)表于 2025-3-22 09:18:16 | 只看該作者
6#
發(fā)表于 2025-3-22 14:29:52 | 只看該作者
Secure Image Transmission in Wireless Network Using Conventional Neural Network and DOST,iscrete orthonormal Stockwell transform (DOST) and CNN. For image encryption, pixel shuffling method and Arnold transform are used in DOST domain. The proposed methods are compared and analyzed the performance using mean error, PSNR and Entropy difference. The obtained results are better in compared to existing methods.
7#
發(fā)表于 2025-3-22 18:19:57 | 只看該作者
Book 2021o, and graphics stands as one of the most demanding and exciting aspects of the information era. The book discusses new challenges faced by researchers in dealing with these large-scale data and also presents innovative solutions to address several potential research problems, e.g., enabling compreh
8#
發(fā)表于 2025-3-23 00:22:57 | 只看該作者
9#
發(fā)表于 2025-3-23 05:07:21 | 只看該作者
10#
發(fā)表于 2025-3-23 07:43:28 | 只看該作者
Robust General Twin Support Vector Machine with Pinball Loss Function,positive definite. The incorporation of the structural risk minimization principle via introduction of the regularisation term leads to the improved generalization performance of the proposed Pin-RGTSVM. Numerical experiments and statistical evaluation on the real world benchmark datasets show the efficacy of the proposed Pin-RGTSVM.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德江县| 清丰县| 绵阳市| 沿河| 炎陵县| 阿城市| 米林县| 尚志市| 安新县| 岐山县| 广汉市| 攀枝花市| 尼玛县| 清镇市| 永嘉县| 富川| 延安市| 惠东县| 山东省| 巍山| 宜州市| 铜鼓县| 延长县| 伊春市| 嘉峪关市| 沁阳市| 饶阳县| 龙门县| 金塔县| 仙居县| 五指山市| 沽源县| 土默特左旗| 克什克腾旗| 新昌县| 石台县| 鹤山市| 山西省| 永泰县| 巴彦县| 手机|