找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Engineers; Using data to solve Ryan G. McClarren Textbook 2021 Springer Nature Switzerland AG 2021 supervised learnin

[復(fù)制鏈接]
查看: 23017|回復(fù): 41
樓主
發(fā)表于 2025-3-21 17:13:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning for Engineers
副標(biāo)題Using data to solve
編輯Ryan G. McClarren
視頻videohttp://file.papertrans.cn/621/620619/620619.mp4
概述Illustrates concepts with examples and case studies drawn from engineering science.Presents detailed coverage of deep neural networks for practical applications in engineering science.Provides source
圖書封面Titlebook: Machine Learning for Engineers; Using data to solve  Ryan G. McClarren Textbook 2021 Springer Nature Switzerland AG 2021 supervised learnin
描述.All engineers and applied scientists will need to harness the power of machine learning to solve the highly complex and data intensive problems now emerging. This text teaches state-of-the-art machine learning technologies to students and practicing engineers from the traditionally “analog” disciplines—mechanical, aerospace, chemical, nuclear, and civil. Dr. McClarren examines these technologies from an engineering perspective and illustrates their specific value to engineers by presenting concrete examples based on physical systems. The book proceeds from basic learning models to deep neural networks, gradually increasing readers’ ability to apply modern machine learning techniques to their current work and to prepare them for future, as yet unknown, problems. Rather than taking a black box approach, the author teaches a broad range of techniques while conveying the kinds of problems best addressed by each. Examples and case studies in controls, dynamics, heat transfer, and other engineering applications are implemented in Python and the libraries scikit-learn and tensorflow,? demonstrating how readers can apply the most up-to-date methods to their own problems. The book equally
出版日期Textbook 2021
關(guān)鍵詞supervised learning; unsupervised learning; Bayesian statistics; linear models; tree-based models; deep n
版次1
doihttps://doi.org/10.1007/978-3-030-70388-2
isbn_softcover978-3-030-70390-5
isbn_ebook978-3-030-70388-2
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Machine Learning for Engineers影響因子(影響力)




書目名稱Machine Learning for Engineers影響因子(影響力)學(xué)科排名




書目名稱Machine Learning for Engineers網(wǎng)絡(luò)公開度




書目名稱Machine Learning for Engineers網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning for Engineers被引頻次




書目名稱Machine Learning for Engineers被引頻次學(xué)科排名




書目名稱Machine Learning for Engineers年度引用




書目名稱Machine Learning for Engineers年度引用學(xué)科排名




書目名稱Machine Learning for Engineers讀者反饋




書目名稱Machine Learning for Engineers讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:09:45 | 只看該作者
http://image.papertrans.cn/m/image/620619.jpg
板凳
發(fā)表于 2025-3-22 03:19:17 | 只看該作者
https://doi.org/10.1007/978-3-030-70388-2supervised learning; unsupervised learning; Bayesian statistics; linear models; tree-based models; deep n
地板
發(fā)表于 2025-3-22 07:43:14 | 只看該作者
978-3-030-70390-5Springer Nature Switzerland AG 2021
5#
發(fā)表于 2025-3-22 09:09:38 | 只看該作者
Textbook 2021merging. This text teaches state-of-the-art machine learning technologies to students and practicing engineers from the traditionally “analog” disciplines—mechanical, aerospace, chemical, nuclear, and civil. Dr. McClarren examines these technologies from an engineering perspective and illustrates th
6#
發(fā)表于 2025-3-22 16:49:59 | 只看該作者
7#
發(fā)表于 2025-3-22 19:13:27 | 只看該作者
Recurrent Neural Networks for Time Series Dataut sequences are long. We then develop a more sophisticated network, the long short-term memory (LSTM) network to deal with longer sequences of data. Examples include predicting the frequency and shift of a signal and predicting the behavior of a cart-mounted pendulum
8#
發(fā)表于 2025-3-23 00:24:27 | 只看該作者
9#
發(fā)表于 2025-3-23 04:15:56 | 只看該作者
10#
發(fā)表于 2025-3-23 08:55:56 | 只看該作者
Finding Structure Within a Data Set: Data Reduction and Clustering clusters in the data set are found using distance measures in the independent variables, and t-SNE, where high-dimensional data are mapped into a low-dimensional (2 or 3 dimensions) data set to visualize the clusters. We close this chapter by applying supervised learning methods to hyper-spectral imaging of plant leaves.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 02:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芷江| 中宁县| 红原县| 昂仁县| 舞阳县| 嘉善县| 白河县| 乃东县| 武安市| 百色市| 嘉禾县| 鄂州市| 二连浩特市| 团风县| 永嘉县| 巩留县| 镇远县| 沂南县| 安阳市| 简阳市| 特克斯县| 白朗县| 澄江县| 通化市| 昭平县| 茶陵县| 肃宁县| 靖安县| 景泰县| 井研县| 团风县| 仁怀市| 鄂托克前旗| 马山县| 江口县| 大理市| 正宁县| 上犹县| 岳阳市| 肇东市| 湖口县|