找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Economics and Finance in TensorFlow 2; Deep Learning Models Isaiah Hull Book 2021 Isaiah Hull 2021 Machine Learning.Da

[復(fù)制鏈接]
樓主: 動(dòng)詞
21#
發(fā)表于 2025-3-25 06:54:40 | 只看該作者
Theoretical Models,er, we explain?how theoretical economic models can be defined and solved in TensorFlow. We also?discuss the use of reinforcement learning as a means of solving models?and briefly?consider an example that involves?deep?Q-learning.
22#
發(fā)表于 2025-3-25 08:13:33 | 只看該作者
oblems with an empirical dimension.Define and solve any mathMachine learning has taken time to move into the space of academic economics. This is because empirical research in economics is concentrated on the identification of causal relationships in parsimonious statistical models; whereas machine
23#
發(fā)表于 2025-3-25 11:43:44 | 只看該作者
TensorFlow 2, 2, which was a substantial departure from TensorFlow 1. In this chapter, we will introduce TensorFlow 2, explain how it can be used in economics and finance, and then review preliminary material that will be necessary for understanding the material in later chapters. .
24#
發(fā)表于 2025-3-25 18:53:57 | 只看該作者
Trees,lems in economics and finance.?In this chapter, we introduce the concept of tree-based models, including random forests and gradient-boosted trees,?and then?examine their implementation in the high-level Estimators API.
25#
發(fā)表于 2025-3-25 20:51:35 | 只看該作者
26#
發(fā)表于 2025-3-26 03:57:06 | 只看該作者
Time Series,n. There is, however, a clear intersection between objectives when it comes to forecasting in economics and finance. Throughout this chapter, we will?use machine learning and TensorFlow?to forecast inflation in a time series context, building on an early use of neural networks in economics (Nakamura 2005).
27#
發(fā)表于 2025-3-26 06:16:07 | 只看該作者
28#
發(fā)表于 2025-3-26 10:46:06 | 只看該作者
Isaiah HullGain a full pipeline of tools needed to structure and develop an ML economics project.Apply a variety of deep learning models to economic problems with an empirical dimension.Define and solve any math
29#
發(fā)表于 2025-3-26 15:30:06 | 只看該作者
30#
發(fā)表于 2025-3-26 17:44:27 | 只看該作者
https://doi.org/10.1007/978-1-4842-6373-0Machine Learning; Data Science; Big Data; Economics; Finance; TesnorFlow; Deep Learning; Text Analysis; Natu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
集贤县| 清河县| 平度市| 巴楚县| 大新县| 昌图县| 汉中市| 岳池县| 嘉祥县| 吉林省| 延安市| 郸城县| 布拖县| 龙井市| 西充县| 石林| 通渭县| 宁阳县| 长岛县| 祁连县| 萍乡市| 宁南县| 阿荣旗| 沈丘县| 德州市| 潮安县| 西贡区| 阿巴嘎旗| 大竹县| 儋州市| 桂东县| 曲水县| 剑河县| 巴东县| 孝义市| 明光市| 舒城县| 神农架林区| 石景山区| 北票市| 乐至县|