找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Economics and Finance in TensorFlow 2; Deep Learning Models Isaiah Hull Book 2021 Isaiah Hull 2021 Machine Learning.Da

[復(fù)制鏈接]
樓主: 動(dòng)詞
21#
發(fā)表于 2025-3-25 06:54:40 | 只看該作者
Theoretical Models,er, we explain?how theoretical economic models can be defined and solved in TensorFlow. We also?discuss the use of reinforcement learning as a means of solving models?and briefly?consider an example that involves?deep?Q-learning.
22#
發(fā)表于 2025-3-25 08:13:33 | 只看該作者
oblems with an empirical dimension.Define and solve any mathMachine learning has taken time to move into the space of academic economics. This is because empirical research in economics is concentrated on the identification of causal relationships in parsimonious statistical models; whereas machine
23#
發(fā)表于 2025-3-25 11:43:44 | 只看該作者
TensorFlow 2, 2, which was a substantial departure from TensorFlow 1. In this chapter, we will introduce TensorFlow 2, explain how it can be used in economics and finance, and then review preliminary material that will be necessary for understanding the material in later chapters. .
24#
發(fā)表于 2025-3-25 18:53:57 | 只看該作者
Trees,lems in economics and finance.?In this chapter, we introduce the concept of tree-based models, including random forests and gradient-boosted trees,?and then?examine their implementation in the high-level Estimators API.
25#
發(fā)表于 2025-3-25 20:51:35 | 只看該作者
26#
發(fā)表于 2025-3-26 03:57:06 | 只看該作者
Time Series,n. There is, however, a clear intersection between objectives when it comes to forecasting in economics and finance. Throughout this chapter, we will?use machine learning and TensorFlow?to forecast inflation in a time series context, building on an early use of neural networks in economics (Nakamura 2005).
27#
發(fā)表于 2025-3-26 06:16:07 | 只看該作者
28#
發(fā)表于 2025-3-26 10:46:06 | 只看該作者
Isaiah HullGain a full pipeline of tools needed to structure and develop an ML economics project.Apply a variety of deep learning models to economic problems with an empirical dimension.Define and solve any math
29#
發(fā)表于 2025-3-26 15:30:06 | 只看該作者
30#
發(fā)表于 2025-3-26 17:44:27 | 只看該作者
https://doi.org/10.1007/978-1-4842-6373-0Machine Learning; Data Science; Big Data; Economics; Finance; TesnorFlow; Deep Learning; Text Analysis; Natu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霞浦县| 永登县| 旌德县| 十堰市| 海伦市| 湄潭县| 克山县| 苏尼特右旗| 安远县| 乾安县| 梁平县| 邯郸市| 福鼎市| 德江县| 普定县| 南华县| 浦东新区| 翁牛特旗| 平舆县| 贵州省| 朝阳区| 灯塔市| 石屏县| 三原县| 满洲里市| 岳西县| 中山市| 平武县| 池州市| 射阳县| 千阳县| 藁城市| 大名县| 南江县| 武宣县| 慈利县| 什邡市| 政和县| 万安县| 五莲县| 鄱阳县|