找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Econometrics and Related Topics; Vladik Kreinovich,Songsak Sriboonchitta,Woraphon Y Book 2024 The Editor(s) (if appli

[復(fù)制鏈接]
樓主: 要求
51#
發(fā)表于 2025-3-30 11:02:40 | 只看該作者
,Forecasting Market Index of?Stock Exchange of?Thailand, Malaysia, and?Singapore with?the?Gaussian P markets. This study compares the forecasting performance of the models with a lag from 1 to 5. The comparison is based on the root-mean-square error (RMSE) and the mean absolute error (MAE). The prediction results from the GPR are then compared to the Autoregressive model (AR). The results show tha
52#
發(fā)表于 2025-3-30 16:04:09 | 只看該作者
53#
發(fā)表于 2025-3-30 16:49:25 | 只看該作者
,Why Rectified Linear Unit Is Efficient in?Machine Learning: One More Explanation,ion for why rectified linear units—the main units of deep learning—are so effective. This explanation is similar to the usual explanation of why Gaussian (normal) distributions are ubiquitous—namely, it is based on an appropriate limit theorem.
54#
發(fā)表于 2025-3-31 00:46:43 | 只看該作者
,Why Shapley Value and?Its Variants Are Useful in?Machine Learning (and in?Other Applications),rative games). This success is somewhat puzzling, since the usual derivation of the Shapley value is based on requirements like additivity that are natural in cooperative games and but not in machine learning. In this paper, we provide a new simple derivation of the Shapley value, a derivation that
55#
發(fā)表于 2025-3-31 04:02:57 | 只看該作者
56#
發(fā)表于 2025-3-31 07:08:34 | 只看該作者
57#
發(fā)表于 2025-3-31 09:22:44 | 只看該作者
58#
發(fā)表于 2025-3-31 15:16:12 | 只看該作者
59#
發(fā)表于 2025-3-31 17:51:30 | 只看該作者
60#
發(fā)表于 2025-4-1 00:13:48 | 只看該作者
,Household Characteristics and?the?Pattern of?Gambling, Alcohol and?Tobacco Expenditures,these behaviors have been found to be interrelated. This study illustrates the pattern of the unhealthy behaviors in Thailand by clustering households based on their gambling, alcohol and tobacco expenditures using the k-mean clustering method. In addition, we also examine household characteristics
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 14:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台州市| 沧州市| 卢湾区| 平凉市| 金昌市| 南乐县| 资阳市| 苏尼特左旗| 尚义县| 静安区| 蓬安县| 怀来县| 凤庆县| 南城县| 三江| 吉林市| 庆阳市| 宝坻区| 蒲江县| 元朗区| 望城县| 石阡县| 黔南| 邵武市| 宾川县| 墨竹工卡县| 通化市| 红安县| 开平市| 阜南县| 仙桃市| 柳州市| 重庆市| 屏南县| 沅江市| 隆德县| 贵州省| 高雄市| 松滋市| 三河市| 册亨县|