找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Earth Sciences; Using Python to Solv Maurizio Petrelli Textbook 2023 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
樓主: NO610
31#
發(fā)表于 2025-3-27 00:20:40 | 只看該作者
32#
發(fā)表于 2025-3-27 04:58:48 | 只看該作者
Unsupervised Machine Learning MethodsThis chapter introduces unsupervised machine learning methods. It starts by describing the algorithms for dimensionality reduction, which include principal component analysis and manifold learning. It then describes clustering methods, such as hierarchical clustering, DBSCAN, mean shift, K-means, spectral clustering, and Gaussian-mixture models.
33#
發(fā)表于 2025-3-27 07:52:46 | 只看該作者
Clustering and Dimensionality Reduction in PetrologyChapter . describes how to apply unsupervised machine learning methods in petrology. It focuses on analyzing the clinopyroxene erupted by Mt. Etna during the sequence of lava fountains that occurred between February and April of 2021. The application of clustering and dimensionality reduction techniques is described in detail.
34#
發(fā)表于 2025-3-27 13:13:02 | 只看該作者
35#
發(fā)表于 2025-3-27 17:10:48 | 只看該作者
Classification of Well Log Data Facies by Machine LearningThis chapter focuses on the classification by machine learning of facies in well-log data. It progressively develops a machine learning workflow that includes descriptive statistics, algorithm selection, model optimization, model training, and application to blind observations. Each step is discussed in detail.
36#
發(fā)表于 2025-3-27 18:47:53 | 只看該作者
Machine Learning Regression in PetrologyThis chapter applies machine-learning regression to petrology. It explains how to calibrate machine-learning thermo-barometers based on orthopyroxene crystals in equilibrium with the melt in a volcanic plumbing system. It also describes the calibration of a thermo-barometer based on orthopyroxenes crystals.
37#
發(fā)表于 2025-3-27 22:35:57 | 只看該作者
38#
發(fā)表于 2025-3-28 02:22:22 | 只看該作者
Scale Your Models in the CloudThis chapter shows how to scale machine-learning models in the cloud. In the context of cloud computing, the term “scaling” refers to the ability to quickly and efficiently change the capability of a computational resource to handle a model that no longer fits the available resources.
39#
發(fā)表于 2025-3-28 06:29:41 | 只看該作者
Introduction to Deep LearningThis chapter is about deep learning. It starts by introducing the basics of deep learning and then introduces PyTorch, a Python deep learning library. It also describes how to set up and train feedforward networks. Finally, it provides an example application dealing with deep learning potentials in the Earth Sciences.
40#
發(fā)表于 2025-3-28 13:47:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 17:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
来凤县| 阜城县| 泸溪县| 延边| 杂多县| 蛟河市| 宽城| 栾川县| 任丘市| 长寿区| 休宁县| 天台县| 潮安县| 乌兰县| 清涧县| 安新县| 古交市| 禄劝| 温州市| 许昌县| 漳州市| 溧水县| 福鼎市| 吴桥县| 广元市| 长乐市| 桓仁| 永顺县| 太湖县| 泽州县| 镇安县| 汉寿县| 东阳市| 孙吴县| 灵丘县| 尉氏县| 房产| 麻栗坡县| 临湘市| 南陵县| 盐山县|