找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Dynamic Software Analysis: Potentials and Limits; International Dagstu Amel Bennaceur,Reiner H?hnle,Karl Meinke Book 2

[復(fù)制鏈接]
查看: 32267|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:17:09 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning for Dynamic Software Analysis: Potentials and Limits
副標(biāo)題International Dagstu
編輯Amel Bennaceur,Reiner H?hnle,Karl Meinke
視頻videohttp://file.papertrans.cn/621/620613/620613.mp4
概述Written by international experts.Presents the state of the art and suggests new directions and collaborations for future research.Gives an overview of the machine learning techniques that can be used
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning for Dynamic Software Analysis: Potentials and Limits; International Dagstu Amel Bennaceur,Reiner H?hnle,Karl Meinke Book 2
描述Machine learning of software artefacts is an emerging area of interaction between the machine learning and software analysis communities.? Increased productivity in software engineering relies on the creation of new adaptive, scalable tools that can analyse large and continuously changing software systems.? These require new software analysis techniques based on machine learning, such as learning-based software testing, invariant generation or code synthesis. Machine learning is a powerful paradigm that provides novel approaches to automating the generation of models and other essential software artifacts.? This volume originates from a Dagstuhl Seminar entitled "Machine Learning for Dynamic Software Analysis: Potentials and Limits” held in April 2016. The seminar focused on fostering a spirit of collaboration in order to share insights and to expand and strengthen the cross-fertilisation between the machine learning and software analysis communities.? The book provides an overview of the machine learning techniques that can be used for software analysis and presents example applications of their use. Besides an introductory chapter, the book is structured into three parts: testing
出版日期Book 2018
關(guān)鍵詞Active learning; Artificial intelligence; Automated static analysis; Computing methodologies; Dynamic an
版次1
doihttps://doi.org/10.1007/978-3-319-96562-8
isbn_softcover978-3-319-96561-1
isbn_ebook978-3-319-96562-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Machine Learning for Dynamic Software Analysis: Potentials and Limits影響因子(影響力)




書目名稱Machine Learning for Dynamic Software Analysis: Potentials and Limits影響因子(影響力)學(xué)科排名




書目名稱Machine Learning for Dynamic Software Analysis: Potentials and Limits網(wǎng)絡(luò)公開度




書目名稱Machine Learning for Dynamic Software Analysis: Potentials and Limits網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning for Dynamic Software Analysis: Potentials and Limits被引頻次




書目名稱Machine Learning for Dynamic Software Analysis: Potentials and Limits被引頻次學(xué)科排名




書目名稱Machine Learning for Dynamic Software Analysis: Potentials and Limits年度引用




書目名稱Machine Learning for Dynamic Software Analysis: Potentials and Limits年度引用學(xué)科排名




書目名稱Machine Learning for Dynamic Software Analysis: Potentials and Limits讀者反饋




書目名稱Machine Learning for Dynamic Software Analysis: Potentials and Limits讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:17:32 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:18:31 | 只看該作者
Amel Bennaceur,Reiner H?hnle,Karl MeinkeWritten by international experts.Presents the state of the art and suggests new directions and collaborations for future research.Gives an overview of the machine learning techniques that can be used
地板
發(fā)表于 2025-3-22 04:38:43 | 只看該作者
5#
發(fā)表于 2025-3-22 08:47:45 | 只看該作者
6#
發(fā)表于 2025-3-22 14:59:02 | 只看該作者
Machine Learning for Dynamic Software Analysis: Potentials and Limits978-3-319-96562-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
7#
發(fā)表于 2025-3-22 20:27:03 | 只看該作者
Learning-Based Testing: Recent Progress and Future Prospectsrics enable a precise, general and quantitative approach to both speed of learning and test coverage. Moreover, quantitative approaches to black-box test coverage serve to distinguish LBT from alternative approaches such as random and search-based testing. We conclude by outlining some prospects for future research.
8#
發(fā)表于 2025-3-23 00:25:40 | 只看該作者
9#
發(fā)表于 2025-3-23 04:41:41 | 只看該作者
Constraint-Based Behavioral Consistency of Evolving Software Systemsnd we describe some of the research challenges that must be solved. Our main idea is to combine software analysis approaches represented by various forms of static analysis and formal verification with runtime verification, monitoring, and automata learning in order to optimally leverage the de facto observed behaviour of the deployed systems.
10#
發(fā)表于 2025-3-23 06:23:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 09:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌黎县| 禹州市| 英德市| 平塘县| 闸北区| 信宜市| 德安县| 淳化县| 绥滨县| 什邡市| 鄂托克前旗| 巧家县| 高阳县| 阿拉善右旗| 政和县| 浙江省| 鹤岗市| 井陉县| 天峻县| 开化县| 永定县| 马尔康县| 田东县| 安图县| 东乡族自治县| 浪卡子县| 宿州市| 云龙县| 邵东县| 五峰| 柳河县| 洪江市| 积石山| 宁津县| 弥渡县| 阆中市| 木里| 黄大仙区| 盘山县| 阜宁县| 松溪县|