找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Authorship Attribution and Cyber Forensics; Farkhund Iqbal,Mourad Debbabi,Benjamin C. M. Fung Book 2020 The Editor(s)

[復制鏈接]
查看: 35846|回復: 48
樓主
發(fā)表于 2025-3-21 16:08:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning for Authorship Attribution and Cyber Forensics
編輯Farkhund Iqbal,Mourad Debbabi,Benjamin C. M. Fung
視頻videohttp://file.papertrans.cn/621/620587/620587.mp4
概述Unified approach to investigate digital crimes and identify suspects together with their collaborators and facilitators.Customized data mining and machine learning methods for investigating cyber-atta
叢書名稱International Series on Computer, Entertainment and Media Technology
圖書封面Titlebook: Machine Learning for Authorship Attribution and Cyber Forensics;  Farkhund Iqbal,Mourad Debbabi,Benjamin C. M. Fung Book 2020 The Editor(s)
描述.The book first explores the cybersecurity’s landscape and the inherent susceptibility of online communication system such as e-mail, chat conversation and social media in cybercrimes. Common sources and resources of digital crimes, their causes and effects together with the emerging threats for society are illustrated in this book. This book not only explores the growing needs of cybersecurity and digital forensics but also investigates relevant technologies and methods to meet the said needs. Knowledge discovery, machine learning and data analytics are explored for collecting cyber-intelligence and forensics evidence on cybercrimes..Online communication documents, which are the main source of cybercrimes are investigated from two perspectives: the crime and the criminal. AI and machine learning methods are applied to detect illegal and criminal activities such as bot distribution, drug trafficking and child pornography. Authorship analysis is applied to identify the potentialsuspects and their social linguistics characteristics. Deep learning together with frequent pattern mining and link mining techniques are applied to trace the potential collaborators of the identified crimina
出版日期Book 2020
關鍵詞Cybercrime; Forensic investigation; Cyber forensics; Crime investigation; Data mining; Classification; Clu
版次1
doihttps://doi.org/10.1007/978-3-030-61675-5
isbn_softcover978-3-030-61677-9
isbn_ebook978-3-030-61675-5Series ISSN 2364-947X Series E-ISSN 2364-9488
issn_series 2364-947X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Machine Learning for Authorship Attribution and Cyber Forensics影響因子(影響力)




書目名稱Machine Learning for Authorship Attribution and Cyber Forensics影響因子(影響力)學科排名




書目名稱Machine Learning for Authorship Attribution and Cyber Forensics網絡公開度




書目名稱Machine Learning for Authorship Attribution and Cyber Forensics網絡公開度學科排名




書目名稱Machine Learning for Authorship Attribution and Cyber Forensics被引頻次




書目名稱Machine Learning for Authorship Attribution and Cyber Forensics被引頻次學科排名




書目名稱Machine Learning for Authorship Attribution and Cyber Forensics年度引用




書目名稱Machine Learning for Authorship Attribution and Cyber Forensics年度引用學科排名




書目名稱Machine Learning for Authorship Attribution and Cyber Forensics讀者反饋




書目名稱Machine Learning for Authorship Attribution and Cyber Forensics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:42:55 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:55:40 | 只看該作者
Analyzing Network Level Information,sage, including header and network information; and how to forensically analyze the dataset to attain the information that would be necessary to trace back to the source of the crime. The header content and network information are usually the immediate sources for collecting preliminary information
地板
發(fā)表于 2025-3-22 05:13:28 | 只看該作者
5#
發(fā)表于 2025-3-22 10:10:24 | 只看該作者
6#
發(fā)表于 2025-3-22 15:40:27 | 只看該作者
Authorship Characterization,. Unlike the problems of authorship attribution, where the potential suspects and their training samples are accessible for investigation, no candidate list of suspects is available in authorship characterization. Instead, the investigator is given one or more anonymous documents and is asked to ide
7#
發(fā)表于 2025-3-22 17:41:00 | 只看該作者
8#
發(fā)表于 2025-3-23 00:45:49 | 只看該作者
Criminal Information Mining,g criminal information from the textual content of suspicious online messages. Archives of online messages, including chat logs, e-mails, web forums, and blogs, often contain an enormous amount of forensically relevant information about potential suspects and their illegitimate activities. Such info
9#
發(fā)表于 2025-3-23 04:18:33 | 只看該作者
Artificial Intelligence And Digital Forensics,arge or complex tasks that normally require human intelligence; furthermore, it comprises a combination of technologies that can obtain insights and patterns from a massive amount of data which is a crucial element of forensic analysis. This chapter focuses on AI and its subfields: machine learning
10#
發(fā)表于 2025-3-23 08:42:49 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 09:42
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
灵寿县| 清河县| 西和县| 青岛市| 宁强县| 涞源县| 抚顺市| 莆田市| 玉门市| 隆德县| 青铜峡市| 屏南县| 五大连池市| 象州县| 玉屏| 敦煌市| 嵩明县| 章丘市| 崇文区| 榕江县| 祁东县| 静安区| 雷波县| 闽侯县| 金堂县| 温州市| 柞水县| 金华市| 仁化县| 东阳市| 兴安盟| 台北县| 石泉县| 台州市| 富源县| 赫章县| 盐源县| 西充县| 黑水县| 泾源县| 普安县|