找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Astrophysics; Proceedings of the M Filomena Bufano,Simone Riggi,Francesco Schilliro Conference proceedings 2023 The Ed

[復(fù)制鏈接]
查看: 32550|回復(fù): 65
樓主
發(fā)表于 2025-3-21 19:10:03 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning for Astrophysics
副標(biāo)題Proceedings of the M
編輯Filomena Bufano,Simone Riggi,Francesco Schilliro
視頻videohttp://file.papertrans.cn/621/620583/620583.mp4
概述Provides a comprehensive view of machine learning techniques applied to astrophysics.Discusses limitations of ML applications to astrophysics.With a feature on how to face future radioastronomy data d
叢書名稱Astrophysics and Space Science Proceedings
圖書封面Titlebook: Machine Learning for Astrophysics; Proceedings of the M Filomena Bufano,Simone Riggi,Francesco Schilliro Conference proceedings 2023 The Ed
描述.This book reviews the state of the art in the exploitation of machine learning techniques for the astrophysics community and gives the reader a complete overview of the field. The contributed chapters allow the reader to easily digest the material through balanced theoretical and numerical methods and tools with applications in different fields of theoretical and observational astronomy. The book helps the reader to really understand and quantify both the opportunities and limitations of using machine learning in several fields of astrophysics..
出版日期Conference proceedings 2023
關(guān)鍵詞time series in astronomy and astrophysics; anomaly discovery in data; machine learning techniques; soft
版次1
doihttps://doi.org/10.1007/978-3-031-34167-0
isbn_softcover978-3-031-34169-4
isbn_ebook978-3-031-34167-0Series ISSN 1570-6591 Series E-ISSN 1570-6605
issn_series 1570-6591
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Machine Learning for Astrophysics影響因子(影響力)




書目名稱Machine Learning for Astrophysics影響因子(影響力)學(xué)科排名




書目名稱Machine Learning for Astrophysics網(wǎng)絡(luò)公開度




書目名稱Machine Learning for Astrophysics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning for Astrophysics被引頻次




書目名稱Machine Learning for Astrophysics被引頻次學(xué)科排名




書目名稱Machine Learning for Astrophysics年度引用




書目名稱Machine Learning for Astrophysics年度引用學(xué)科排名




書目名稱Machine Learning for Astrophysics讀者反饋




書目名稱Machine Learning for Astrophysics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:42:22 | 只看該作者
Machine Learning for Astrophysics978-3-031-34167-0Series ISSN 1570-6591 Series E-ISSN 1570-6605
板凳
發(fā)表于 2025-3-22 01:31:23 | 只看該作者
地板
發(fā)表于 2025-3-22 06:38:40 | 只看該作者
5#
發(fā)表于 2025-3-22 11:03:26 | 只看該作者
6#
發(fā)表于 2025-3-22 14:09:20 | 只看該作者
Classification of Evolved Stars with (Unsupervised) Machine Learning,wavelength photometric measurements. The foundation is a custom made reference dataset compiled from available stellar catalogues for target sources—AGB, Wolf Rayet, luminous blue variable and red supergiant stars. Our results indicate that applying HDBSCAN to UMAP’s feature representation seems to be the most effective approach for this usecase.
7#
發(fā)表于 2025-3-22 17:25:43 | 只看該作者
8#
發(fā)表于 2025-3-22 21:36:35 | 只看該作者
9#
發(fā)表于 2025-3-23 02:40:22 | 只看該作者
10#
發(fā)表于 2025-3-23 05:49:40 | 只看該作者
Event Reconstruction for Neutrino Telescopes,ance to many physics analyses and searches, and improvements in both accuracy and speed have a direct, positive impact on the science. This proceeding will shortly review some common reconstruction methods, and present a few novel event reconstruction algorithms based on machine learning.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 16:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁强县| 夹江县| 德钦县| 集安市| 西林县| 惠安县| 库尔勒市| 太白县| 青龙| 天水市| 商南县| 昭通市| 沂南县| 淳化县| 中西区| 铜陵市| 吉林市| 梅州市| 平利县| 南宫市| 安岳县| 平顺县| 华容县| 新竹市| 宝坻区| 高尔夫| 中西区| 岗巴县| 宁波市| 丽江市| 吉林省| 长宁县| 吉木萨尔县| 大名县| 彰武县| 那坡县| 大田县| 西贡区| 延津县| 柘荣县| 仙桃市|