找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Advanced Functional Materials; Nirav Joshi,Vinod Kushvaha,Priyanka Madhushri Book 2023 The Editor(s) (if applicable)

[復(fù)制鏈接]
查看: 46475|回復(fù): 52
樓主
發(fā)表于 2025-3-21 18:56:54 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning for Advanced Functional Materials
編輯Nirav Joshi,Vinod Kushvaha,Priyanka Madhushri
視頻videohttp://file.papertrans.cn/621/620582/620582.mp4
概述Highlights machine learning methods and their applications in material science and nanotechnologies.Covers machine learning in modeling as well as data analyses on material characteristics.Provides a
圖書封面Titlebook: Machine Learning for Advanced Functional Materials;  Nirav Joshi,Vinod Kushvaha,Priyanka Madhushri Book 2023 The Editor(s) (if applicable)
描述.This book presents recent advancements of machine learning methods and their applications in material science and nanotechnologies. It provides an introduction to the field and for those who wish to explore machine learning in modeling as well as conduct data analyses of material characteristics. The book discusses ways to enhance the material’s electrical and mechanical properties based on available regression methods for supervised learning and optimization of material attributes. In summary, the growing interest among academics and professionals in the field of machine learning methods in functional nanomaterials such as sensors, solar cells, and photocatalysis is the driving force for behind this book. This is a comprehensive scientific reference book on machine learning for advanced functional materials and provides an in-depth examination of recent achievements in material science by focusing on topical issues using machine learning methods..
出版日期Book 2023
關(guān)鍵詞Thermoelectric materials; Sensors and biosensors; Polymer solar cell; Biomarker identification; Cancer r
版次1
doihttps://doi.org/10.1007/978-981-99-0393-1
isbn_softcover978-981-99-0395-5
isbn_ebook978-981-99-0393-1
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Machine Learning for Advanced Functional Materials影響因子(影響力)




書目名稱Machine Learning for Advanced Functional Materials影響因子(影響力)學(xué)科排名




書目名稱Machine Learning for Advanced Functional Materials網(wǎng)絡(luò)公開度




書目名稱Machine Learning for Advanced Functional Materials網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning for Advanced Functional Materials被引頻次




書目名稱Machine Learning for Advanced Functional Materials被引頻次學(xué)科排名




書目名稱Machine Learning for Advanced Functional Materials年度引用




書目名稱Machine Learning for Advanced Functional Materials年度引用學(xué)科排名




書目名稱Machine Learning for Advanced Functional Materials讀者反饋




書目名稱Machine Learning for Advanced Functional Materials讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:16:24 | 只看該作者
Machine Learning for Advanced Functional Materials
板凳
發(fā)表于 2025-3-22 03:01:38 | 只看該作者
地板
發(fā)表于 2025-3-22 05:18:18 | 只看該作者
5#
發(fā)表于 2025-3-22 11:33:18 | 只看該作者
Tulsi Satyavir Dabodiya,Jayant Kumar,Arumugam Vadivel Murugan
6#
發(fā)表于 2025-3-22 16:23:32 | 只看該作者
7#
發(fā)表于 2025-3-22 21:04:29 | 只看該作者
8#
發(fā)表于 2025-3-22 23:40:52 | 只看該作者
Shirong Huang,Alexander Croy,Bergoi Ibarlucea,Gianaurelio Cunibertin 2.2.2 presents an overview of how Hoey’s (1991, 1995) ideas about . evolved and were tested and then described in . (2005). Thirdly, in Sections 2.3 and 2.4, the psychological concept of priming, first mention by Quillian (1961) is discussed. Then Section 2.5 looks at priming and the new options t
9#
發(fā)表于 2025-3-23 04:44:55 | 只看該作者
10#
發(fā)表于 2025-3-23 06:32:28 | 只看該作者
Purvi Bhatt,Neha Singh,Sumit Chaudharyitions (Vossen 1990b), statistical programs to deal with the distributional properties of lexical items in large corpora (Church & Hanks 1990) etc. At the same time this kind of massive data-acquisition should be made sensitive to the borders between perceptual experience, lexical knowledge and expe
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宿松县| 玉山县| 兖州市| 犍为县| 江都市| 永善县| 安乡县| 察雅县| 台中市| 蒙阴县| 南皮县| 城固县| 洞头县| 长泰县| 城步| 吉隆县| 墨江| 安宁市| 京山县| 黑龙江省| 阿克苏市| 永春县| 且末县| 峡江县| 大厂| 广饶县| 泽州县| 绥德县| 天气| 乐昌市| 翼城县| 海丰县| 大城县| 东城区| 肃北| 那曲县| 屏东县| 平谷区| 库尔勒市| 黄龙县| 光山县|