找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Principles and Practice of Knowledge Discovery in Databases; International Worksh Irena Koprinska,Paolo Mignone,Sepide

[復(fù)制鏈接]
查看: 33168|回復(fù): 56
樓主
發(fā)表于 2025-3-21 16:39:24 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning and Principles and Practice of Knowledge Discovery in Databases
副標(biāo)題International Worksh
編輯Irena Koprinska,Paolo Mignone,Sepideh Pashami
視頻videohttp://file.papertrans.cn/621/620572/620572.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Machine Learning and Principles and Practice of Knowledge Discovery in Databases; International Worksh Irena Koprinska,Paolo Mignone,Sepide
描述This volume constitutes the papers of several workshops which were held in conjunction with the International Workshops of ECML PKDD 2022 on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2022, held in Grenoble, France, during September 19–23, 2022.?.The 73 revised full papers and 6 short papers presented in this book were carefully reviewed and selected from 143 submissions. ECML PKDD 2022 presents the following five workshops:.Workshop on Data Science for Social Good (SoGood 2022).Workshop on New Frontiers in Mining Complex Patterns (NFMCP 2022).Workshop on Explainable Knowledge Discovery in Data Mining (XKDD 2022).Workshop on Uplift Modeling (UMOD 2022).Workshop on IoT, Edge and Mobile for Embedded Machine Learning (ITEM 2022).Workshop on Mining Data for Financial Application (MIDAS 2022).Workshop on Machine Learning for Cybersecurity (MLCS 2022).Workshop on Machine Learning for Buildings Energy Management (MLBEM 2022).?.Workshop on Machine Learning for Pharma and Healthcare Applications (PharML 2022).Workshop on Data Analysis in Life Science (DALS 2022).Workshop on IoT Streams for Predictive Maintenance (IoT-PdM 2022).
出版日期Conference proceedings 2023
關(guān)鍵詞artificial intelligence; classification methods; computer crime; computer networks; computer security; co
版次1
doihttps://doi.org/10.1007/978-3-031-23633-4
isbn_softcover978-3-031-23632-7
isbn_ebook978-3-031-23633-4Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Machine Learning and Principles and Practice of Knowledge Discovery in Databases影響因子(影響力)




書目名稱Machine Learning and Principles and Practice of Knowledge Discovery in Databases影響因子(影響力)學(xué)科排名




書目名稱Machine Learning and Principles and Practice of Knowledge Discovery in Databases網(wǎng)絡(luò)公開度




書目名稱Machine Learning and Principles and Practice of Knowledge Discovery in Databases網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning and Principles and Practice of Knowledge Discovery in Databases被引頻次




書目名稱Machine Learning and Principles and Practice of Knowledge Discovery in Databases被引頻次學(xué)科排名




書目名稱Machine Learning and Principles and Practice of Knowledge Discovery in Databases年度引用




書目名稱Machine Learning and Principles and Practice of Knowledge Discovery in Databases年度引用學(xué)科排名




書目名稱Machine Learning and Principles and Practice of Knowledge Discovery in Databases讀者反饋




書目名稱Machine Learning and Principles and Practice of Knowledge Discovery in Databases讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:58:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:10:51 | 只看該作者
Privacy-Preserving Machine Learning in?Life Insurance Risk Prediction One of the most relevant ones is privacy. However, privacy-preserving methods can potentially hinder the predictive potential of machine learning models. In this paper, we present preliminary experiments with life insurance data using two privacy-preserving techniques: discretization and encryption
地板
發(fā)表于 2025-3-22 06:57:31 | 只看該作者
Financial Distress Model Prediction Using Machine Learning: A Case Study on?Indonesia’s Consumers Cyal distress affects the sustainability of a company’s operations and undermines the rights and interests of its stakeholders, also harming the national economy and society. Therefore, we developed an accurate predictive model for financial distress. Using 17 financial attributes obtained from the fi
5#
發(fā)表于 2025-3-22 09:38:56 | 只看該作者
6#
發(fā)表于 2025-3-22 16:48:54 | 只看該作者
Towards Explainable Occupational Fraud Detectionenable automated detection of occupational fraud through recording large amounts of company data, the use of state-of-the-art machine learning approaches in this domain is limited by their untraceable decision process. In this study, we evaluate whether machine learning combined with explainable art
7#
發(fā)表于 2025-3-22 18:19:09 | 只看該作者
Towards Data-Driven Volatility Modeling with?Variational Autoencodersautonomously learns concepts such as the volatility level, smile, and term structure without leaning on hypotheses from traditional volatility modeling techniques. In addition to introducing notable improvements to an existing variational autoencoder approach for the reconstruction of both complete
8#
發(fā)表于 2025-3-23 01:02:01 | 只看該作者
9#
發(fā)表于 2025-3-23 05:19:19 | 只看該作者
10#
發(fā)表于 2025-3-23 08:18:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 18:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彝良县| 开封市| 庄浪县| 蒙城县| 泽库县| 常州市| 祁门县| 沅陵县| 永仁县| 隆化县| 尤溪县| 厦门市| 璧山县| 都江堰市| 龙陵县| 武威市| 哈巴河县| 马公市| 油尖旺区| 新蔡县| 秭归县| 环江| 江津市| 宿松县| 中超| 德格县| 辉南县| 巴青县| 余姚市| 沧州市| 漳平市| 加查县| 麦盖提县| 临西县| 新安县| 祥云县| 永德县| 临夏市| 延庆县| 高淳县| 桓台县|