找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Other Soft Computing Techniques: Biomedical and Related Applications; Nguyen Hoang Phuong,Nguyen Thi Huyen Chau,Vladi

[復(fù)制鏈接]
樓主: culinary
41#
發(fā)表于 2025-3-28 14:35:25 | 只看該作者
42#
發(fā)表于 2025-3-28 20:54:26 | 只看該作者
,How to?Best Retrain a?Neural Network if?We Added One More Input Variable,re-training will take a lot of time, almost as much as the original training. In this paper, we show, both theoretically and experimentally, that in such situations, we can speed up re-training—practically without decreasing resulting accuracy—if we only update some weights.
43#
發(fā)表于 2025-3-29 00:57:36 | 只看該作者
44#
發(fā)表于 2025-3-29 04:29:22 | 只看該作者
45#
發(fā)表于 2025-3-29 10:19:55 | 只看該作者
,Why Bump Reward Function Works Well in?Training Insulin Delivery Systems,situations and regulate blood glucose level, patients with severe form of diabetes need insulin injections. Ideally, the system should automatically decide when best to inject insulin and how much to inject. To find the optimal control, researchers applied machine learning with different reward func
46#
發(fā)表于 2025-3-29 14:42:49 | 只看該作者
47#
發(fā)表于 2025-3-29 16:20:19 | 只看該作者
,How to?Best Retrain a?Neural Network if?We Added One More Input Variable,values of an additional quantity that have some influence on .. In such situations, it is desirable to re-train the neural network, so that it will be able to take this extra value into account. A straightforward idea is to add a new input to the first layer and to update all the weights based on th
48#
發(fā)表于 2025-3-29 22:45:32 | 只看該作者
,Towards a?Psychologically Natural Relation Between Colors and?Fuzzy Degrees,ium: light. Light consists of components of different color. So, if we use optical color computations to process fuzzy data, we need to associate fuzzy degrees with colors. One of the main features—and of the main advantages—of fuzzy technique is that the corresponding data has intuitive natural mea
49#
發(fā)表于 2025-3-30 00:19:04 | 只看該作者
50#
發(fā)表于 2025-3-30 07:50:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆化县| 德兴市| 巴楚县| 嘉义市| 普兰店市| 外汇| 宝应县| 通山县| 宝坻区| 海城市| 大洼县| 晋城| 吉林市| 永靖县| 富平县| 肃北| 乳源| 潞城市| 甘肃省| 鱼台县| 高密市| 抚松县| 社旗县| 嘉定区| 沙田区| 萨嘎县| 高青县| 海城市| 寻乌县| 曲周县| 柳江县| 文水县| 株洲县| 芮城县| 苏尼特右旗| 铜陵市| 泸水县| 陆川县| 牡丹江市| 新竹县| 城市|