找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Metaheuristics Algorithms, and Applications; Second Symposium, So Sabu M. Thampi,Selwyn Piramuthu,Dhananjay Singh Conf

[復(fù)制鏈接]
樓主: FAD
11#
發(fā)表于 2025-3-23 10:11:32 | 只看該作者
12#
發(fā)表于 2025-3-23 15:03:01 | 只看該作者
Exam Seating Allocation to Prevent Malpractice Using Genetic Multi-optimization Algorithm,
13#
發(fā)表于 2025-3-23 19:47:28 | 只看該作者
Machine Learning and Metaheuristics Algorithms, and ApplicationsSecond Symposium, So
14#
發(fā)表于 2025-3-23 23:56:13 | 只看該作者
15#
發(fā)表于 2025-3-24 05:50:16 | 只看該作者
Deep Neural Networks with Multi-class SVM for Recognition of Cross-Spectral Iris Images,Poly-U database, which is from 209 subjects. CNN with softmax cross-entropy loss gives the most accurate matching of testing images. This method gives better results in terms of EER. We analyzed the proposed architecture on other publicly available databases through various experiments.
16#
發(fā)表于 2025-3-24 10:28:25 | 只看該作者
Emotion Recognition from Facial Expressions Using Siamese Network,t recognizes emotions using our in-house developed dataset AED-2 (Amrita Emotion Dataset-2) which has 56 images of subjects expressing seven basic emotions viz., disgust, sad, fear, happy, neutral, anger, and surprise. It involves the implementation of the Siamese network which estimates the similar
17#
發(fā)表于 2025-3-24 11:01:35 | 只看該作者
Stock Price Prediction Using Machine Learning and LSTM-Based Deep Learning Models,ression models using the training data that consisted of NIFTY 50 index records from December 29, 2014 till December 28, 2018. Using these regression models, we predicted the . values of NIFTY 50 for the period December 31, 2018 till July 31, 2020. We, then, augment the predictive power of our forec
18#
發(fā)表于 2025-3-24 15:52:36 | 只看該作者
19#
發(fā)表于 2025-3-24 23:04:25 | 只看該作者
Analysis of UNSW-NB15 Dataset Using Machine Learning Classifiers,s, Logistic Regression, SMO, J48 and Random Forest. Experimental results give out its noticeable classification accuracy of 0.99 with the random forest classifier having 0.998 recall and specificity 0.999 respectively. Research studies reveal the fact that threat diagnosis using conventional dataset
20#
發(fā)表于 2025-3-25 01:22:33 | 只看該作者
Concept Drift Detection in Phishing Using Autoencoders,concept drift. We use ADD to detect drift in a phishing detection data set which contains drift as it was collected over one year. We also show that ADD is competitive within ±24% with popular streaming drift detection algorithms on benchmark drift datasets. The average accuracy on the phishing data
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
婺源县| 南靖县| 蓝田县| 邢台县| 中方县| 曲阳县| 大冶市| 麻城市| 安龙县| 高碑店市| 泰安市| 清新县| 永善县| 皮山县| 镇宁| 连南| 绥阳县| 瑞丽市| 鲜城| 遵化市| 称多县| 额敏县| 五华县| 玉溪市| 巴彦淖尔市| 正蓝旗| 应用必备| 烟台市| 湾仔区| 常宁市| 宜兰市| 凭祥市| 横山县| 喀喇沁旗| 历史| 额敏县| 遂宁市| 雅安市| 中江县| 永川市| 南岸区|