找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Extraction; 5th IFIP TC 5, TC 12 Andreas Holzinger,Peter Kieseberg,Edgar Weippl Conference proceedings 2021

[復(fù)制鏈接]
樓主: 導(dǎo)彈
21#
發(fā)表于 2025-3-25 07:21:34 | 只看該作者
Fair and Adequate Explanations,artiality of counterfactual explanations that can hide biases; we define fair and adequate explanations in such a setting. We then provide formal results about the algorithmic complexity of fair and adequate explanations.
22#
發(fā)表于 2025-3-25 07:36:08 | 只看該作者
Active Finite Reward Automaton Inference and Reinforcement Learning Using Queries and Counterexamplpproximate any non-Markovian bounded reward function (with infinitely many reward values) with arbitrary precision. We also provide a lower bound for the episode length such that the proposed RL approach almost surely converges to an optimal policy in the limit. We test this approach on two RL envir
23#
發(fā)表于 2025-3-25 13:22:12 | 只看該作者
Airbnb Price Prediction Using Machine Learning and Sentiment Analysis,so used to select the most representative features for predicting the price of the listings. Experimentation shows that SVR model can achieve an . score of 69% and a MSE of 0.147 (defined on ln(price)) on the test set, outperforming the other models considered in the paper. [Link to the repository:
24#
發(fā)表于 2025-3-25 17:09:33 | 只看該作者
25#
發(fā)表于 2025-3-25 21:53:09 | 只看該作者
Deep Convolutional Neural Network (CNN) Design for Pathology Detection of COVID-19 in Chest X-Ray Isubsequently the images were used for training. After consolidation, COVID-19 images comprised only 5% of the dataset. To address the class imbalance, we have used dynamic image augmentation technique to reduce the bias. We have then explored custom CNN and VGG-16, InceptionNet-V3, MobileNet-V2, Res
26#
發(fā)表于 2025-3-26 01:27:12 | 只看該作者
27#
發(fā)表于 2025-3-26 07:00:38 | 只看該作者
On the Trustworthiness of Tree Ensemble Explainability Methods,he accuracy and stability of global feature importance methods through comprehensive experiments done on simulations as well as four real-world datasets. We focus on tree-based ensemble methods as they are used widely in industry and measure the accuracy and stability of explanations under two scena
28#
發(fā)表于 2025-3-26 11:02:25 | 只看該作者
29#
發(fā)表于 2025-3-26 14:34:05 | 只看該作者
Mining Causal Hypotheses in Categorical Time Series by Iterating on Binary Correlations,ficantly high correlations are then combined and can be validated for causalities by means of plausibility and semantic criteria. Our experimental results are presented on anonymised real production state time series and a simple representational concept for further causal interpretation is introduced.
30#
發(fā)表于 2025-3-26 19:24:41 | 只看該作者
Rice Seed Image-to-Image Translation Using Generative Adversarial Networks to Improve Weedy Rice Im from a typical mobile phone cameras into the closed environment setting. Our GAN architecture can translate mobile phone images and achieves 90.06% weedy rice recognition accuracy, as compared to 58.10% without the translation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 09:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洪洞县| 钟山县| 中江县| 登封市| 涿州市| 苏尼特左旗| 罗城| 宜阳县| 长宁区| 五寨县| 宜良县| 正宁县| 曲水县| 泰安市| 特克斯县| 卓尼县| 凤台县| 明星| 巴青县| 木里| 安泽县| 宝丰县| 水富县| 栾城县| 新津县| 香港| 富顺县| 张家口市| 富民县| 石渠县| 巨鹿县| 阜康市| 静乐县| 买车| 观塘区| 米脂县| 罗江县| 福鼎市| 株洲县| 嘉鱼县| 泰和县|