找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases: Research Track; European Conference, Danai Koutra,Claudia Plant,Francesco Bonchi Con

[復(fù)制鏈接]
查看: 11953|回復(fù): 61
樓主
發(fā)表于 2025-3-21 19:28:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Machine Learning and Knowledge Discovery in Databases: Research Track
副標(biāo)題European Conference,
編輯Danai Koutra,Claudia Plant,Francesco Bonchi
視頻videohttp://file.papertrans.cn/621/620554/620554.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Machine Learning and Knowledge Discovery in Databases: Research Track; European Conference, Danai Koutra,Claudia Plant,Francesco Bonchi Con
描述The multi-volume set LNAI 14169 until? 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023..The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track.?.The volumes are organized in topical sections as follows:.Part I:.?Active Learning;?Adversarial Machine Learning;?Anomaly Detection; Applications; Bayesian Methods; Causality;? ?Clustering..Part II:?.?Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning..Part III:?.?Graph Neural Networks;?Graphs; Interpretability;?Knowledge Graphs; Large-scale Learning..Part IV:.??Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning;?Representation Learning..Part V:.??Robustness; Time Series; Transfer and Multitask Learning..Part VI:.??Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Intera
出版日期Conference proceedings 2023
關(guān)鍵詞artificial intelligence; computer hardware; computer networks; computer security; computer systems; compu
版次1
doihttps://doi.org/10.1007/978-3-031-43424-2
isbn_softcover978-3-031-43423-5
isbn_ebook978-3-031-43424-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Machine Learning and Knowledge Discovery in Databases: Research Track影響因子(影響力)




書(shū)目名稱Machine Learning and Knowledge Discovery in Databases: Research Track影響因子(影響力)學(xué)科排名




書(shū)目名稱Machine Learning and Knowledge Discovery in Databases: Research Track網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Machine Learning and Knowledge Discovery in Databases: Research Track網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Machine Learning and Knowledge Discovery in Databases: Research Track被引頻次




書(shū)目名稱Machine Learning and Knowledge Discovery in Databases: Research Track被引頻次學(xué)科排名




書(shū)目名稱Machine Learning and Knowledge Discovery in Databases: Research Track年度引用




書(shū)目名稱Machine Learning and Knowledge Discovery in Databases: Research Track年度引用學(xué)科排名




書(shū)目名稱Machine Learning and Knowledge Discovery in Databases: Research Track讀者反饋




書(shū)目名稱Machine Learning and Knowledge Discovery in Databases: Research Track讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:41:23 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:37:49 | 只看該作者
Exploring the?Training Robustness of?Distributional Reinforcement Learning Against Noisy State Obserimal actions or even collapse while training. In this paper, we study the training robustness of distributional Reinforcement Learning?(RL), a class of state-of-the-art methods that estimate the whole distribution, as opposed to only the expectation, of the total return. Firstly, we validate the con
地板
發(fā)表于 2025-3-22 06:57:30 | 只看該作者
5#
發(fā)表于 2025-3-22 10:51:24 | 只看該作者
Label Shift Quantification with?Robustness Guarantees via?Distribution Feature Matchingframework, distribution feature matching (DFM), that recovers as particular instances various estimators introduced in previous literature. We derive a general performance bound for DFM procedures, improving in several key aspects upon previous bounds derived in particular cases. We then extend this
6#
發(fā)表于 2025-3-22 16:13:47 | 只看該作者
7#
發(fā)表于 2025-3-22 21:04:31 | 只看該作者
DualMatch: Robust Semi-supervised Learning with?Dual-Level Interactiong methods typically match model predictions of different data-augmented views in a single-level interaction manner, which highly relies on the quality of pseudo-labels and results in semi-supervised learning not robust. In this paper, we propose a novel SSL method called DualMatch, in which the clas
8#
發(fā)表于 2025-3-22 21:23:20 | 只看該作者
9#
發(fā)表于 2025-3-23 02:15:33 | 只看該作者
Deep Imbalanced Time-Series Forecasting via?Local Discrepancy Densitypite their scarce occurrences in the training set (., data imbalance), abrupt changes incur loss that significantly contributes to the total loss (., heteroscedasticity). Therefore, they act as noisy training samples and prevent the model from learning generalizable patterns, namely the normal state
10#
發(fā)表于 2025-3-23 09:05:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 07:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汤阴县| 霍城县| 化州市| 莎车县| 赤水市| 同德县| 两当县| 务川| 辉县市| 都江堰市| 新龙县| 花垣县| 洛川县| 沙坪坝区| 会泽县| 建阳市| 固始县| 临猗县| 尚义县| 东乡| 石首市| 海兴县| 凭祥市| 九江县| 盐津县| 梅河口市| 平利县| 濉溪县| 山丹县| 云梦县| 广河县| 绥中县| 临武县| 靖边县| 山西省| 孝义市| 盖州市| 淮北市| 巴彦淖尔市| 明光市| 黄山市|