找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track; European Conference, Gianmarco De Francisci Mor

[復制鏈接]
樓主: minuscule
51#
發(fā)表于 2025-3-30 10:54:46 | 只看該作者
52#
發(fā)表于 2025-3-30 14:03:18 | 只看該作者
53#
發(fā)表于 2025-3-30 19:05:02 | 只看該作者
PICT: Precision-enhanced Road Intersection Recognition Using Cycling Trajectoriesward to identify the intersections of different scales correctly. Finally, extensive comparative experiments on two real-world datasets demonstrate that . significantly outperforms the state-of-the-art methods by 52.13% in the F1-score of intersection recognition.
54#
發(fā)表于 2025-3-30 23:13:17 | 只看該作者
FDTI: Fine-Grained Deep Traffic Inference with?Roadnet-Enriched Graphate that our method achieves state-of-the-art performance and learned traffic dynamics with good properties. To the best of our knowledge, we are the first to conduct the city-level fine-grained traffic prediction.
55#
發(fā)表于 2025-3-31 02:01:32 | 只看該作者
RulEth: Genetic Programming-Driven Derivation of?Security Rules for?Automotive Ethernets. Although the attacks examined in this work are far more complex than those considered in most other works in the automotive domain, our results show that most of the attacks examined can be well identified. By being able to evaluate each rule generated separately, the rules that are not working e
56#
發(fā)表于 2025-3-31 05:31:54 | 只看該作者
Spatial-Temporal Graph Sandwich Transformer for?Traffic Flow Forecastingansformer as sliced meat to capture prosperous spatial-temporal interactions. We also assemble a set of such sandwich Transformers together to strengthen the correlations between spatial and temporal domains. Extensive experimental studies are performed on public traffic benchmarks. Promising result
57#
發(fā)表于 2025-3-31 12:50:48 | 只看該作者
58#
發(fā)表于 2025-3-31 16:28:50 | 只看該作者
59#
發(fā)表于 2025-3-31 18:55:35 | 只看該作者
Predictive Maintenance, Adversarial Autoencoders and?Explainabilityur to minimize negative impacts, but also to provide explanations for the failure warnings that can aid in decision-making processes. We propose an autoencoder architecture trained with an adversarial loss, known as the Wasserstein Autoencoder with Generative Adversarial Network (WAE-GAN), designed
60#
發(fā)表于 2025-3-31 23:42:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 15:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
江源县| 凤山市| 咸宁市| 渝中区| 通州区| 杨浦区| 随州市| 惠安县| 应用必备| 阿拉善左旗| 肥西县| 阿图什市| 融水| 岳池县| 福贡县| 原平市| 鲁山县| 芷江| 青川县| 砀山县| 安塞县| 调兵山市| 越西县| 双城市| 广宗县| 红安县| 宽甸| 娱乐| 商都县| 托克托县| 公安县| 福泉市| 崇文区| 松阳县| 廉江市| 施秉县| 乌兰县| 永城市| 尉犁县| 玛曲县| 平乡县|