找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track; European Conference, Gianmarco De Francisci Mor

[復(fù)制鏈接]
查看: 17558|回復(fù): 59
樓主
發(fā)表于 2025-3-21 17:22:24 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track
副標(biāo)題European Conference,
編輯Gianmarco De Francisci Morales,Claudia Perlich,Fra
視頻videohttp://file.papertrans.cn/621/620548/620548.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track; European Conference, Gianmarco De Francisci Mor
描述The multi-volume set LNAI 14169 until? 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023..The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track.?.The volumes are organized in topical sections as follows:.Part I:.?Active Learning;?Adversarial Machine Learning;?Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering..Part II:?.?Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning..Part III:?.?Graph Neural Networks;?Graphs; Interpretability;?Knowledge Graphs; Large-scale Learning..Part IV:.??Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning;?Representation Learning..Part V:.??Robustness; Time Series; Transfer and Multitask Learning..Part VI:.??Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interact
出版日期Conference proceedings 2023
關(guān)鍵詞artificial intelligence; computer hardware; computer networks; computer security; computer systems; compu
版次1
doihttps://doi.org/10.1007/978-3-031-43430-3
isbn_softcover978-3-031-43429-7
isbn_ebook978-3-031-43430-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track影響因子(影響力)




書目名稱Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track影響因子(影響力)學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track網(wǎng)絡(luò)公開度




書目名稱Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track被引頻次




書目名稱Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track被引頻次學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track年度引用




書目名稱Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track年度引用學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track讀者反饋




書目名稱Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:51:18 | 只看該作者
Counterfactual Explanations for?Remote Sensing Time Series Data: An Application to?Land Cover Classi remote sensing, in which scientists and practitioners with diverse backgrounds work together to monitor the Earth’s surface. In this context, counterfactual explanations are an emerging tool to characterize the behaviour of machine learning systems, by providing a post-hoc analysis of a given class
板凳
發(fā)表于 2025-3-22 03:01:50 | 只看該作者
地板
發(fā)表于 2025-3-22 07:54:31 | 只看該作者
Comprehensive Transformer-Based Model Architecture for?Real-World Storm Predictiontion model usually incurs excessive computational overhead due to employing atmosphere physical equations and complicated data assimilation. In this work, we strive to develop a lightweight and portable Transformer-based model architecture, which takes satellite and radar images as its input, for re
5#
發(fā)表于 2025-3-22 12:15:25 | 只看該作者
6#
發(fā)表于 2025-3-22 14:52:54 | 只看該作者
Deep Spatiotemporal Clustering: A Temporal Clustering Approach for?Multi-dimensional Climate Dataate-of-the-art methods for unsupervised clustering use different similarity and distance functions but focus on either spatial or temporal features of the data. Concentrating on joint deep representation learning of spatial and temporal features, we propose Deep Spatiotemporal Clustering (DSC), a no
7#
發(fā)表于 2025-3-22 18:46:58 | 只看該作者
8#
發(fā)表于 2025-3-22 23:35:16 | 只看該作者
Pre-training Contextual Location Embeddings in?Personal Trajectories via?Efficient Hierarchical Localing the location embedding is too expensive, due to the large number of locations to be trained in situations with fine-grained resolution or extensive target regions. Previous studies have handled less than ten thousand distinct locations, which is insufficient in the real-world applications. To t
9#
發(fā)表于 2025-3-23 02:09:59 | 只看該作者
Leveraging Queue Length and?Attention Mechanisms for?Enhanced Traffic Signal Control Optimizationased TSC methods tend to focus primarily on the RL model structure while neglecting the significance of proper traffic state representation. Furthermore, some RL-based methods heavily rely on expert-designed traffic signal phase competition. In this paper, we present a novel approach to TSC that uti
10#
發(fā)表于 2025-3-23 07:04:47 | 只看該作者
PICT: Precision-enhanced Road Intersection Recognition Using Cycling Trajectoriesever, the existing approaches mainly identify road intersections based on motor vehicles’ trajectories, and they fail to tackle unique challenges posed by cycling trajectories: (i) Cycling trajectories of minor intersections and their adjacent road segments are quite sparse. (ii) Turning behaviors o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 13:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿鲁科尔沁旗| 察雅县| 汤阴县| 新建县| 临海市| 陆川县| 海阳市| 蓬安县| 措美县| 曲麻莱县| 锦州市| 溧阳市| 车险| 岚皋县| 晋中市| 两当县| 临洮县| 延津县| 友谊县| 囊谦县| 双峰县| 沈阳市| 伊通| 诸城市| 云安县| 鹤壁市| 靖远县| 如东县| 潮州市| 天峻县| 营口市| 龙岩市| 安宁市| 应用必备| 桦川县| 江北区| 油尖旺区| 沂源县| 望江县| 郓城县| 揭东县|