找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases. Research Track; European Conference, Albert Bifet,Jesse Davis,Indr? ?liobait? Confer

[復制鏈接]
樓主: STRI
21#
發(fā)表于 2025-3-25 03:25:56 | 只看該作者
22#
發(fā)表于 2025-3-25 07:54:07 | 只看該作者
23#
發(fā)表于 2025-3-25 11:51:15 | 只看該作者
Dynamics Adaptive Safe Reinforcement Learning with?a?Misspecified Simulatortraditional methods. Subsequently, DASaR aligns the estimated value functions in the simulator and the real-world environment via inverse dynamics-based relabeling of reward and cost signals. Furthermore, to deal with the underestimation of cost value functions, DASaR employs uncertainty estimation
24#
發(fā)表于 2025-3-25 19:07:01 | 只看該作者
25#
發(fā)表于 2025-3-25 23:38:55 | 只看該作者
26#
發(fā)表于 2025-3-26 02:54:10 | 只看該作者
FairFlow: An Automated Approach to?Model-Based Counterfactual Data Augmentation for NLP paper proposes FairFlow, an automated approach to generating parallel data for training counterfactual text generator models that limits the need for human intervention. Furthermore, we show that FairFlow significantly overcomes the limitations of dictionary-based word-substitution approaches whils
27#
發(fā)表于 2025-3-26 05:56:13 | 只看該作者
28#
發(fā)表于 2025-3-26 12:16:29 | 只看該作者
MEGA: Multi-encoder GNN Architecture for?Stronger Task Collaboration and?Generalizationng of each task. This architecture allows for independent learning from multiple pretext tasks, followed by a simple self-supervised dimensionality reduction technique to combine the insights gleaned. Through extensive experiments, we demonstrate the superiority of our approach, showcasing an averag
29#
發(fā)表于 2025-3-26 15:01:41 | 只看該作者
MetaQuRe: Meta-learning from?Model Quality and?Resource Consumptionurce consumption of models evaluated across hundreds of data sets and four execution environments. We use this data to put our methodology into practice and conduct an in-depth analysis of how our approach and data set can help in making AutoML more resource-aware, which represents our third contrib
30#
發(fā)表于 2025-3-26 20:03:39 | 只看該作者
Propagation Structure-Semantic Transfer Learning for?Robust Fake News Detectiontion under a teacher-student architecture. Specifically, we design dual teacher models to learn semantics knowledge and structure knowledge from noisy news content and propagation structure independently. Besides, we design a Multi-channel Knowledge Distillation (MKD) loss to enable the student mode
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
翁牛特旗| 松江区| 彰化市| 长宁县| 浦北县| 涟水县| 定日县| 渝北区| 永康市| 连江县| 千阳县| 玉屏| 保山市| 浪卡子县| 汤原县| 普格县| 江山市| 靖边县| 卢湾区| 黄骅市| 开江县| 竹北市| 台北县| 南平市| 马关县| 筠连县| 库尔勒市| 新竹县| 东海县| 黄冈市| 静海县| 宜都市| 阿尔山市| 乌什县| 德惠市| 建瓯市| 望江县| 临武县| 开阳县| 鱼台县| 八宿县|