找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases. Research Track; European Conference, Nuria Oliver,Fernando Pérez-Cruz,Jose A. Lozano

[復(fù)制鏈接]
查看: 14615|回復(fù): 65
樓主
發(fā)表于 2025-3-21 19:58:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track
副標(biāo)題European Conference,
編輯Nuria Oliver,Fernando Pérez-Cruz,Jose A. Lozano
視頻videohttp://file.papertrans.cn/621/620543/620543.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning and Knowledge Discovery in Databases. Research Track; European Conference, Nuria Oliver,Fernando Pérez-Cruz,Jose A. Lozano
描述.The multi-volume set LNAI 12975 until 12979 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2021, which was held during September 13-17, 2021. The conference was originally planned to take place in Bilbao, Spain, but changed to an online event due to the COVID-19 pandemic.?.The 210 full papers presented in these proceedings were carefully reviewed and selected from a total of 869 submissions...The volumes are organized in topical sections as follows:..Research Track:..Part I:. Online learning; reinforcement learning; time series, streams, and sequence models; transfer and multi-task learning; semi-supervised and few-shot learning; learning algorithms and applications...Part II:. Generative models; algorithms and learning theory; graphs and networks; interpretation, explainability, transparency, safety...Part III: .Generative models; search and optimization; supervised learning; text mining and natural language processing; image processing, computer vision and visual analytics...Applied Data Science Track:..Part IV:. Anomaly detection and malware; spatio-temporal data; e-commerce and finance; health
出版日期Conference proceedings 2021
關(guān)鍵詞applied computing; computer vision; computing methodologies; correlation analysis; data mining; databases
版次1
doihttps://doi.org/10.1007/978-3-030-86523-8
isbn_softcover978-3-030-86522-1
isbn_ebook978-3-030-86523-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track影響因子(影響力)




書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track影響因子(影響力)學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track網(wǎng)絡(luò)公開度




書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track被引頻次




書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track被引頻次學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track年度引用




書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track年度引用學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track讀者反饋




書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:36:23 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:48:42 | 只看該作者
地板
發(fā)表于 2025-3-22 06:42:53 | 只看該作者
Joslim: ,oint Widths and Weights ,ptimization for ,mable Neural Networks. From a practical standpoint, we propose Joslim, an algorithm that jointly optimizes both the widths and weights for slimmable nets, which outperforms existing methods for optimizing slimmable networks across various networks, datasets, and objectives. Quantitatively, improvements up?to 1.7% and 8%
5#
發(fā)表于 2025-3-22 09:45:32 | 只看該作者
6#
發(fā)表于 2025-3-22 15:41:26 | 只看該作者
7#
發(fā)表于 2025-3-22 20:08:06 | 只看該作者
8#
發(fā)表于 2025-3-22 21:45:45 | 只看該作者
Variance Reduced Stochastic Proximal Algorithm for AUC Maximization Variance Reduced Stochastic Proximal algorithm for AUC Maximization (.) that combines the two areas of analyzing non-decomposable performance metrics with and optimization efforts to guarantee faster convergence. We perform an in-depth theoretical and empirical analysis to demonstrate that our algo
9#
發(fā)表于 2025-3-23 01:50:57 | 只看該作者
More General and Effective Model Compression via an Additive Combination of Compressionsusing only 1 bit per weight without error degradation at the cost of adding a few floating point weights. However, VGG nets can be better compressed by combining low-rank with a few floating point weights.
10#
發(fā)表于 2025-3-23 05:36:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 06:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
方城县| 崇信县| 涞源县| 湘乡市| 孝昌县| 盐城市| 定结县| 五莲县| 汽车| 潮州市| 昭苏县| 庆云县| 巩留县| 龙口市| 锦州市| 慈溪市| 故城县| 阳春市| 徐州市| 宾川县| 天津市| 运城市| 利辛县| 高淳县| 开远市| 灵丘县| 大理市| 怀安县| 尤溪县| 宜宾市| 九龙县| 桓仁| 清徐县| 长子县| 呼玛县| 临泉县| 建始县| 陆川县| 蒲江县| 西乌珠穆沁旗| 申扎县|