找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases. Research Track; European Conference, Albert Bifet,Jesse Davis,Indr? ?liobait? Confer

[復制鏈接]
查看: 34196|回復: 58
樓主
發(fā)表于 2025-3-21 17:23:04 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track
副標題European Conference,
編輯Albert Bifet,Jesse Davis,Indr? ?liobait?
視頻videohttp://file.papertrans.cn/621/620542/620542.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning and Knowledge Discovery in Databases. Research Track; European Conference, Albert Bifet,Jesse Davis,Indr? ?liobait? Confer
描述.This multi-volume set, LNAI 14941 to LNAI 14950, constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2024, held in Vilnius, Lithuania, in September 2024...?..The papers presented in these proceedings are from the following three conference tracks: -..Research Track:.?The 202 full papers presented here, from this track, were carefully reviewed and selected from 826 submissions. These papers are present in the following volumes: Part I, II, III, IV, V, VI, VII, VIII...?..Demo Track: .The 14 papers presented here, from this track, were selected from 30 submissions.?These papers are present in the following volume: Part VIII...?..Applied Data Science Track:?.The 56 full papers presented here, from this track, were carefully reviewed and selected from 224 submissions. These papers are present in the following volumes: Part IX and Part X..
出版日期Conference proceedings 2024
關鍵詞artificial intelligence; computer security; computer systems; computer vision; computational modelling; d
版次1
doihttps://doi.org/10.1007/978-3-031-70352-2
isbn_softcover978-3-031-70351-5
isbn_ebook978-3-031-70352-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track影響因子(影響力)




書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track影響因子(影響力)學科排名




書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track網絡公開度




書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track網絡公開度學科排名




書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track被引頻次




書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track被引頻次學科排名




書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track年度引用




書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track年度引用學科排名




書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track讀者反饋




書目名稱Machine Learning and Knowledge Discovery in Databases. Research Track讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:39:57 | 只看該作者
Reinventing Node-centric Traffic Forecasting for?Improved Accuracy and?Efficiencyg methods, we identify two primary research approaches: node-centric and graph-centric. Node-centric methods focus on constructing spatial features through preprocessing and modeling spatial correlations in the input space. In contrast, graph-centric methods mainly rely on graph neural networks to c
板凳
發(fā)表于 2025-3-22 03:56:31 | 只看該作者
Direct-Effect Risk Minimization for?Domain Generalizationhis is known as the problem of correlation shift and has posed concerns on the reliability of machine learning. In this work, we introduce the framework of direct and indirect effects from causal inference to the domain generalization problem. Models that learn direct effects minimize the worst-case
地板
發(fā)表于 2025-3-22 06:03:23 | 只看該作者
Federated Frank-Wolfe Algorithmrithms for constrained machine learning problems are still limited, particularly when the projection step is costly. To this end, we propose a Federated Frank-Wolfe Algorithm (.). . features data privacy, low per-iteration cost, and communication of sparse signals. In the deterministic setting, . ac
5#
發(fā)表于 2025-3-22 09:29:44 | 只看該作者
6#
發(fā)表于 2025-3-22 16:21:04 | 只看該作者
Deep Sketched Output Kernel Regression for?Structured Predictionwide variety of output modalities. In particular, they have been successfully used in the context of surrogate non-parametric regression, where the kernel trick is typically exploited in the input space as well. However, when inputs are images or texts, more expressive models such as deep neural net
7#
發(fā)表于 2025-3-22 19:21:47 | 只看該作者
8#
發(fā)表于 2025-3-23 00:00:25 | 只看該作者
9#
發(fā)表于 2025-3-23 01:41:46 | 只看該作者
10#
發(fā)表于 2025-3-23 08:19:40 | 只看該作者
Probabilistic Circuits with?Constraints via?Convex Optimization class of tractable models that allow efficient computations (such as conditional and marginal probabilities) while achieving state-of-the-art performance in some domains. The proposed approach takes both a PC and constraints as inputs, and outputs a new PC that satisfies the constraints. This is do
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-23 12:31
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
兴隆县| 行唐县| 漾濞| 阿坝| 宁陵县| 兴隆县| 颍上县| 海口市| 南华县| 乾安县| 大同县| 江阴市| 深泽县| 沅陵县| 蚌埠市| 葫芦岛市| 保德县| 仁布县| 彭州市| 瓮安县| 上虞市| 运城市| 南溪县| 锡林郭勒盟| 高邮市| 改则县| 商洛市| 南安市| 德阳市| 白朗县| 馆陶县| 朝阳县| 尤溪县| 武宣县| 南江县| 托克逊县| 凤城市| 永安市| 桐乡市| 临城县| 察哈|