找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases. Research Track; European Conference, Albert Bifet,Jesse Davis,Indr? ?liobait? Confer

[復(fù)制鏈接]
樓主: 根深蒂固
41#
發(fā)表于 2025-3-28 15:00:39 | 只看該作者
Rejection Ensembles with?Online Calibrationnt. One promising approach for optimizing resource consumption is rejection ensembles. Rejection ensembles combine a small model deployed to an edge device with a large model deployed in the cloud with a rejector tasked to determine the most suitable model for a given input. Due to its novelty, exis
42#
發(fā)表于 2025-3-28 19:33:32 | 只看該作者
43#
發(fā)表于 2025-3-28 23:01:13 | 只看該作者
44#
發(fā)表于 2025-3-29 04:16:26 | 只看該作者
45#
發(fā)表于 2025-3-29 08:46:10 | 只看該作者
Interpetable Target-Feature Aggregation for?Multi-task Learning Based on?Bias-Variance Analysisformance. Previous works have proposed approaches to MTL that can be divided into feature learning, focused on the identification of a common feature representation, and task clustering, where similar tasks are grouped together. In this paper, we propose an MTL approach at the intersection between t
46#
發(fā)表于 2025-3-29 14:46:20 | 只看該作者
The Simpler The Better: An Entropy-Based Importance Metric to?Reduce Neural Networks’ Depthmpler downstream tasks, which do not necessarily require a large model’s complexity. Motivated by the awareness of the ever-growing AI environmental impact, we propose an efficiency strategy that leverages prior knowledge transferred by large models. Simple but effective, we propose a method relying
47#
發(fā)表于 2025-3-29 16:04:37 | 只看該作者
Towards Few-Shot Self-explaining Graph Neural Networksy in critical domains such as medicine. A promising approach is the self-explaining method, which outputs explanations along with predictions. However, existing self-explaining models require a large amount of training data, rendering them unavailable in few-shot scenarios. To address this challenge
48#
發(fā)表于 2025-3-29 23:04:20 | 只看該作者
49#
發(fā)表于 2025-3-30 02:42:49 | 只看該作者
50#
發(fā)表于 2025-3-30 05:52:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 13:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新乡县| 桦甸市| 吴堡县| 虹口区| 通州区| 阳高县| 当涂县| 宝鸡市| 凌海市| 交城县| 乐清市| 常德市| 温宿县| 会同县| 通江县| 安化县| 平乡县| 五家渠市| 怀安县| 高尔夫| 武山县| 麻江县| 勐海县| 民乐县| 顺平县| 那坡县| 鱼台县| 江口县| 安国市| 云霄县| 宜城市| 禹城市| 奉化市| 永修县| 柯坪县| 聊城市| 达日县| 汝南县| 大余县| 炎陵县| 岳池县|