找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases. Research Track; European Conference, Albert Bifet,Jesse Davis,Indr? ?liobait? Confer

[復(fù)制鏈接]
樓主: 根深蒂固
41#
發(fā)表于 2025-3-28 15:00:39 | 只看該作者
Rejection Ensembles with?Online Calibrationnt. One promising approach for optimizing resource consumption is rejection ensembles. Rejection ensembles combine a small model deployed to an edge device with a large model deployed in the cloud with a rejector tasked to determine the most suitable model for a given input. Due to its novelty, exis
42#
發(fā)表于 2025-3-28 19:33:32 | 只看該作者
43#
發(fā)表于 2025-3-28 23:01:13 | 只看該作者
44#
發(fā)表于 2025-3-29 04:16:26 | 只看該作者
45#
發(fā)表于 2025-3-29 08:46:10 | 只看該作者
Interpetable Target-Feature Aggregation for?Multi-task Learning Based on?Bias-Variance Analysisformance. Previous works have proposed approaches to MTL that can be divided into feature learning, focused on the identification of a common feature representation, and task clustering, where similar tasks are grouped together. In this paper, we propose an MTL approach at the intersection between t
46#
發(fā)表于 2025-3-29 14:46:20 | 只看該作者
The Simpler The Better: An Entropy-Based Importance Metric to?Reduce Neural Networks’ Depthmpler downstream tasks, which do not necessarily require a large model’s complexity. Motivated by the awareness of the ever-growing AI environmental impact, we propose an efficiency strategy that leverages prior knowledge transferred by large models. Simple but effective, we propose a method relying
47#
發(fā)表于 2025-3-29 16:04:37 | 只看該作者
Towards Few-Shot Self-explaining Graph Neural Networksy in critical domains such as medicine. A promising approach is the self-explaining method, which outputs explanations along with predictions. However, existing self-explaining models require a large amount of training data, rendering them unavailable in few-shot scenarios. To address this challenge
48#
發(fā)表于 2025-3-29 23:04:20 | 只看該作者
49#
發(fā)表于 2025-3-30 02:42:49 | 只看該作者
50#
發(fā)表于 2025-3-30 05:52:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 13:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永登县| 桑日县| 百色市| 长白| 栾川县| 乃东县| 顺昌县| 屏东县| 新余市| 漠河县| 包头市| 东乌珠穆沁旗| 抚宁县| 星座| 大英县| 紫阳县| 丹巴县| 上蔡县| 大同县| 富裕县| 蓝山县| 四子王旗| 伊宁市| 洛阳市| 屏东市| 开原市| 涞水县| 青冈县| 麟游县| 葫芦岛市| 平远县| 图片| 辛集市| 京山县| 梓潼县| 肃宁县| 化德县| 阳信县| 合作市| 清水河县| 桦南县|