找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases. Research Track; European Conference, Albert Bifet,Jesse Davis,Indr? ?liobait? Confer

[復制鏈接]
樓主: 恰當
11#
發(fā)表于 2025-3-23 09:53:48 | 只看該作者
A Theoretically Grounded Extension of?Universal Attacks from?the?Attacker’s Viewpointformance of state-of-the-art gradient-based universal perturbation. As evidenced by our experiments, these novel universal perturbations result in more interpretable, diverse, and transferable attacks.
12#
發(fā)表于 2025-3-23 14:12:10 | 只看該作者
13#
發(fā)表于 2025-3-23 20:57:09 | 只看該作者
14#
發(fā)表于 2025-3-24 00:02:13 | 只看該作者
15#
發(fā)表于 2025-3-24 05:36:19 | 只看該作者
Walking Noise: On Layer-Specific Robustness of?Neural Architectures Against Noisy Computations and?Aorkload. We propose a methodology called . which injects layer-specific?noise to measure the robustness and to provide insights on the learning dynamics. In more detail, we investigate the implications of additive, multiplicative and mixed noise for different classification tasks and model architect
16#
發(fā)表于 2025-3-24 09:19:24 | 只看該作者
KAFè: Kernel Aggregation for?FEderatedel .ggregation for .derated Learning. KAFè leverages Kernel Density Estimation (KDE) to construct a novel classification layer for the global model, drawing upon the estimated weight distributions of the individual classifiers. We conducted several experiments on image and text datasets to evaluate
17#
發(fā)表于 2025-3-24 12:28:08 | 只看該作者
18#
發(fā)表于 2025-3-24 15:39:06 | 只看該作者
19#
發(fā)表于 2025-3-24 20:39:33 | 只看該作者
Low-Hanging Fruit: Knowledge Distillation from?Noisy Teachers for?Open Domain Spoken Language Unders techniques to generate more reliable annotations for unlabelled OD-SLU data, thereby fostering “Consistently Guiding Students”. Initially, IPPS aims to solve the straightforward intent prediction task in OD-SLU using self-ranked prompting, enhancing LLMs precision using similar examples from a smal
20#
發(fā)表于 2025-3-25 01:41:50 | 只看該作者
The Price of?Labelling: A Two-Phase Federated Self-learning Approachsuch as class imbalance and distribution shift across clients. This poses a challenge for creating high-quality pseudo-labels without addressing data heterogeneity. To overcome these challenges, we propose a two-phase FL approach based on data augmentation and self-learning, coined 2PFL. In the firs
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 13:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
买车| 万源市| 宁国市| 利辛县| 福建省| 监利县| 和林格尔县| 晋城| 灯塔市| 台东市| 南靖县| 天津市| 河东区| 沙湾县| 芮城县| 亚东县| 枣阳市| 杭锦后旗| 韩城市| 修武县| 叶城县| 全南县| 布尔津县| 嘉禾县| 内丘县| 通许县| 南漳县| 福清市| 红桥区| 抚州市| 克拉玛依市| 正蓝旗| 恩施市| 滦南县| 耒阳市| 正宁县| 曲阳县| 昭平县| 自贡市| 昆明市| 新龙县|