找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases. Research Track; European Conference, Albert Bifet,Jesse Davis,Indr? ?liobait? Confer

[復制鏈接]
樓主: 恰當
11#
發(fā)表于 2025-3-23 09:53:48 | 只看該作者
A Theoretically Grounded Extension of?Universal Attacks from?the?Attacker’s Viewpointformance of state-of-the-art gradient-based universal perturbation. As evidenced by our experiments, these novel universal perturbations result in more interpretable, diverse, and transferable attacks.
12#
發(fā)表于 2025-3-23 14:12:10 | 只看該作者
13#
發(fā)表于 2025-3-23 20:57:09 | 只看該作者
14#
發(fā)表于 2025-3-24 00:02:13 | 只看該作者
15#
發(fā)表于 2025-3-24 05:36:19 | 只看該作者
Walking Noise: On Layer-Specific Robustness of?Neural Architectures Against Noisy Computations and?Aorkload. We propose a methodology called . which injects layer-specific?noise to measure the robustness and to provide insights on the learning dynamics. In more detail, we investigate the implications of additive, multiplicative and mixed noise for different classification tasks and model architect
16#
發(fā)表于 2025-3-24 09:19:24 | 只看該作者
KAFè: Kernel Aggregation for?FEderatedel .ggregation for .derated Learning. KAFè leverages Kernel Density Estimation (KDE) to construct a novel classification layer for the global model, drawing upon the estimated weight distributions of the individual classifiers. We conducted several experiments on image and text datasets to evaluate
17#
發(fā)表于 2025-3-24 12:28:08 | 只看該作者
18#
發(fā)表于 2025-3-24 15:39:06 | 只看該作者
19#
發(fā)表于 2025-3-24 20:39:33 | 只看該作者
Low-Hanging Fruit: Knowledge Distillation from?Noisy Teachers for?Open Domain Spoken Language Unders techniques to generate more reliable annotations for unlabelled OD-SLU data, thereby fostering “Consistently Guiding Students”. Initially, IPPS aims to solve the straightforward intent prediction task in OD-SLU using self-ranked prompting, enhancing LLMs precision using similar examples from a smal
20#
發(fā)表于 2025-3-25 01:41:50 | 只看該作者
The Price of?Labelling: A Two-Phase Federated Self-learning Approachsuch as class imbalance and distribution shift across clients. This poses a challenge for creating high-quality pseudo-labels without addressing data heterogeneity. To overcome these challenges, we propose a two-phase FL approach based on data augmentation and self-learning, coined 2PFL. In the firs
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 13:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
越西县| 依安县| 抚顺县| 绥滨县| 碌曲县| 韶关市| 黄陵县| 伽师县| 林周县| 洪洞县| 南皮县| 黔南| 丰原市| 若羌县| 益阳市| 新乡市| 南昌市| 长宁区| 柳林县| 阳朔县| 姜堰市| 财经| 邹平县| 山西省| 衡南县| 静乐县| 荣成市| 福海县| 来安县| 永顺县| 高陵县| 阿荣旗| 唐海县| 嘉荫县| 福安市| 醴陵市| 丰城市| 平度市| 都昌县| 博客| 金沙县|