找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Wray Buntine,Marko Grobelnik,John Shawe-Taylor Conference proce

[復(fù)制鏈接]
查看: 43763|回復(fù): 61
樓主
發(fā)表于 2025-3-21 17:07:38 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning and Knowledge Discovery in Databases
副標(biāo)題European Conference,
編輯Wray Buntine,Marko Grobelnik,John Shawe-Taylor
視頻videohttp://file.papertrans.cn/621/620530/620530.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Wray Buntine,Marko Grobelnik,John Shawe-Taylor Conference proce
描述This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2009, held in Bled, Slovenia, in September 2009. The 106 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 422 paper submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.
出版日期Conference proceedings 2009
關(guān)鍵詞classification; clustering; data mining; database; graph mining; information retrieval; knowledge discover
版次1
doihttps://doi.org/10.1007/978-3-642-04180-8
isbn_softcover978-3-642-04179-2
isbn_ebook978-3-642-04180-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

書目名稱Machine Learning and Knowledge Discovery in Databases影響因子(影響力)




書目名稱Machine Learning and Knowledge Discovery in Databases影響因子(影響力)學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases網(wǎng)絡(luò)公開度




書目名稱Machine Learning and Knowledge Discovery in Databases網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases被引頻次




書目名稱Machine Learning and Knowledge Discovery in Databases被引頻次學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases年度引用




書目名稱Machine Learning and Knowledge Discovery in Databases年度引用學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases讀者反饋




書目名稱Machine Learning and Knowledge Discovery in Databases讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:26:11 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:11:15 | 只看該作者
地板
發(fā)表于 2025-3-22 05:38:05 | 只看該作者
5#
發(fā)表于 2025-3-22 11:15:58 | 只看該作者
6#
發(fā)表于 2025-3-22 14:36:23 | 只看該作者
7#
發(fā)表于 2025-3-22 18:14:39 | 只看該作者
8#
發(fā)表于 2025-3-22 23:00:33 | 只看該作者
Sparse Kernel SVMs via Cutting-Plane Training is often hindered by the following two problems. Both problems can be traced back to the number of Support Vectors (SVs), which is known to generally grow linearly with the data set size [1]. First, training is slower than other methods and linear SVMs, where recent advances in training algorithms
9#
發(fā)表于 2025-3-23 01:41:29 | 只看該作者
Hybrid Least-Squares Algorithms for Approximate Policy Evaluation different choices of the optimization criterion. Two popular least-squares algorithms for performing this task are the . method, which minimizes the Bellman residual, and the . method, which minimizes the . of the Bellman residual. When used within policy iteration, the fixed point algorithm tends
10#
發(fā)表于 2025-3-23 05:34:24 | 只看該作者
A Self-training Approach to Cost Sensitive Uncertainty Sampling such as loss-reduction methods. However, unlike loss-reduction methods, uncertainty sampling cannot minimize total misclassification costs when errors incur different costs. This paper introduces a method for performing cost-sensitive uncertainty sampling that makes use of self-training. We show th
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 05:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泾阳县| 海晏县| 固原市| 横山县| 余江县| 万源市| 石景山区| 同德县| 东平县| 富顺县| 囊谦县| 兰州市| 台北县| 探索| 夹江县| 五指山市| 临泉县| 靖江市| 翼城县| 绵阳市| 顺昌县| 乐亭县| 江永县| 扎赉特旗| 德令哈市| 正阳县| 景洪市| 开原市| 垫江县| 河曲县| 叶城县| 闽清县| 雷波县| 峨山| 道真| 新民市| 宁河县| 普洱| 陕西省| 沙雅县| 武川县|