找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Ulf Brefeld,Elisa Fromont,Céline Robardet Conference proceeding

[復(fù)制鏈接]
樓主: proptosis
31#
發(fā)表于 2025-3-26 22:06:51 | 只看該作者
Machine Learning and Knowledge Discovery in DatabasesEuropean Conference,
32#
發(fā)表于 2025-3-27 03:28:08 | 只看該作者
DEvIANT: Discovering Significant Exceptional (Dis-)Agreement Within Groups prove that these approximate CIs are nested along specialization of patterns. This allows to incorporate pruning properties in DEvIANT to quickly discard non-significant patterns. Empirical study on several datasets demonstrates the efficiency and the usefulness of DEvIANT.
33#
發(fā)表于 2025-3-27 08:48:39 | 只看該作者
34#
發(fā)表于 2025-3-27 11:22:04 | 只看該作者
Sets of Robust Rules, and How to Find Themte-of-the-art, . does reliably recover the ground truth. On real world data we show it finds reasonable numbers of rules, that upon close inspection give clear insight in the local distribution of the data.
35#
發(fā)表于 2025-3-27 15:49:15 | 只看該作者
36#
發(fā)表于 2025-3-27 18:04:41 | 只看該作者
: Catching Hierarchical Dense Subtensorlt and select the optimal hierarchical dense subtensors. Extensive experiments on synthetic and real-world datasets demonstrate that . outperforms the top competitors in accuracy for detecting dense subtensors and anomaly patterns. Additionally, . identified a hierarchical researcher co-authorship g
37#
發(fā)表于 2025-3-28 02:01:37 | 只看該作者
Black Box Explanation by Learning Image Exemplars in the Latent Feature SpaceWe present the results of an experimental evaluation on three datasets and two black box models. Besides providing the most useful and interpretable explanations, we show that the proposed method outperforms existing explainers in terms of fidelity, relevance, coherence, and stability.
38#
發(fā)表于 2025-3-28 03:19:55 | 只看該作者
39#
發(fā)表于 2025-3-28 08:50:30 | 只看該作者
Conference proceedings 2020ing and bandits; ranking; applied data science: computer vision and explanation; applied data science: healthcare; applied data science: e-commerce, finance, and advertising; applied data science: rich data; applied data science: applications; demo track...Chapter "Heavy-tailed Kernels Reveal a Fine
40#
發(fā)表于 2025-3-28 13:46:30 | 只看該作者
DEvIANT: Discovering Significant Exceptional (Dis-)Agreement Within Groupsata featuring individuals (e.g., parliamentarians, customers) performing observable actions (e.g., votes, ratings) on entities (e.g., legislative procedures, movies). To this end, we introduce the problem of discovering statistically significant exceptional contextual intra-group agreement patterns.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安福县| 吉林省| 昭平县| 双鸭山市| 瑞昌市| 忻州市| 教育| 广南县| 佛冈县| 嘉祥县| 武威市| 凤凰县| 内丘县| 郧西县| 南投县| 潮安县| 大化| 元朗区| 扬州市| 长阳| 霍山县| 汉源县| 古交市| 巴东县| 吉木乃县| 睢宁县| 乐山市| 长海县| 濮阳市| 甘泉县| 道真| 鹿泉市| 栾城县| 芜湖县| 新野县| 乌什县| 安吉县| 望城县| 南漳县| 夏津县| 德化县|