找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Wray Buntine,Marko Grobelnik,John Shawe-Taylor Conference proce

[復(fù)制鏈接]
樓主: invigorating
21#
發(fā)表于 2025-3-25 05:03:39 | 只看該作者
22#
發(fā)表于 2025-3-25 08:09:35 | 只看該作者
Conference proceedings 2009in Bled, Slovenia, in September 2009. The 106 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 422 paper submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learnin
23#
發(fā)表于 2025-3-25 13:02:31 | 只看該作者
24#
發(fā)表于 2025-3-25 19:19:39 | 只看該作者
25#
發(fā)表于 2025-3-25 22:57:52 | 只看該作者
26#
發(fā)表于 2025-3-26 01:55:14 | 只看該作者
A Convex Method for Locating Regions of Interest with Multi-instance Learningvia key instance generation at the instance-level and bag-level, respectively. Our formulation can be solved efficiently with a cutting plane algorithm. Experiments show that the proposed methods can effectively locate ROIs, and they also achieve performances competitive with state-of-the-art algorithms on benchmark data sets.
27#
發(fā)表于 2025-3-26 05:34:46 | 只看該作者
Active Learning for Reward Estimation in Inverse Reinforcement Learninguse of our algorithm in higher dimensional problems, using both Monte Carlo and gradient methods. We present illustrative results of our algorithm in several simulated examples of different complexities.
28#
發(fā)表于 2025-3-26 11:54:44 | 只看該作者
Simulated Iterative Classification A New Learning Procedure for Graph Labelingsimulating inference during learning. Several variants of the method are introduced. They are both simple, efficient and scale well. Experiments performed on a series of 7 datasets show that the proposed methods outperform representative state-of-the-art algorithms while keeping a low complexity.
29#
發(fā)表于 2025-3-26 14:14:57 | 只看該作者
On Feature Selection, Bias-Variance, and Bagging reduction in dimensionality) with the harm of increased bias (from eliminating some of the relevant features). If a variance reduction method like bagging is used, more (weakly) relevant features can be exploited and the most accurate feature set is usually larger. In many cases, the best performance is obtained by using all available features.
30#
發(fā)表于 2025-3-26 18:06:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 13:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇阳县| 承德县| 桃源县| 沁水县| 论坛| 武强县| 柳林县| 秦安县| 清镇市| 鹤山市| 邢台县| 玉山县| 佛学| 扶余县| 洪洞县| 舒城县| 赫章县| 民县| 日喀则市| 闽清县| 禹州市| 屏山县| 冕宁县| 德惠市| 华安县| 罗定市| 旬阳县| 车险| 银川市| 甘泉县| 翁牛特旗| 昆山市| 密山市| 定南县| 阜南县| 宜春市| 常熟市| 成武县| 忻州市| 乌拉特前旗| 宜宾县|