找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Frank Hutter,Kristian Kersting,Isabel Valera Conference proceed

[復(fù)制鏈接]
查看: 55281|回復(fù): 54
樓主
發(fā)表于 2025-3-21 17:06:45 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning and Knowledge Discovery in Databases
副標(biāo)題European Conference,
編輯Frank Hutter,Kristian Kersting,Isabel Valera
視頻videohttp://file.papertrans.cn/621/620519/620519.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Frank Hutter,Kristian Kersting,Isabel Valera Conference proceed
描述The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic..The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings. ..The volumes are organized in topical sections as follows:..Part I:. Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and autoencoders; domain adaptation; sketching, sampling, and binary projections; graphical models and causality; (spatio-) temporal data and recurrent neural networks; collaborative filtering and matrix completion...Part II:. deep learning optimization and theory;active learning; adversarial learning; federated learning; Kernel methods and online learning; partial label learning; reinforcement learning; transfer and multi-task learning; Bayesian optimization and few-shot learning...Part III: .C
出版日期Conference proceedings 2021
關(guān)鍵詞artificial intelligence; classification methods; computer vision; data mining; graph theory; Human-Comput
版次1
doihttps://doi.org/10.1007/978-3-030-67664-3
isbn_softcover978-3-030-67663-6
isbn_ebook978-3-030-67664-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Machine Learning and Knowledge Discovery in Databases影響因子(影響力)




書目名稱Machine Learning and Knowledge Discovery in Databases影響因子(影響力)學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases網(wǎng)絡(luò)公開度




書目名稱Machine Learning and Knowledge Discovery in Databases網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases被引頻次




書目名稱Machine Learning and Knowledge Discovery in Databases被引頻次學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases年度引用




書目名稱Machine Learning and Knowledge Discovery in Databases年度引用學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases讀者反饋




書目名稱Machine Learning and Knowledge Discovery in Databases讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:54:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:52:19 | 只看該作者
Léo Gautheron,Pascal Germain,Amaury Habrard,Guillaume Metzler,Emilie Morvant,Marc Sebban,Valentina Zicaments chimiques génériques la substitution s’impose de droit, il n’en est pas de même pour les biosimilaires qui ne sont pas inscrits sur les listes de génériques substituables, car par définition les biosim
地板
發(fā)表于 2025-3-22 04:44:38 | 只看該作者
5#
發(fā)表于 2025-3-22 11:37:05 | 只看該作者
6#
發(fā)表于 2025-3-22 14:36:39 | 只看該作者
Towards Description of Block Model on Graph is intractable even for simple cases, e.g., when the underlying graph is a tree with just two blocks. However, simple and efficient ILP formulations and algorithms exist for its relaxation and yield insights different from a state-of-the-art related work in unsupervised description. We empirically
7#
發(fā)表于 2025-3-22 17:20:32 | 只看該作者
Orthant Based Proximal Stochastic Gradient Method for ,-Regularized Optimizationect of sparsity exploration and objective values. Moreover, the experiments on non-convex deep neural networks, ., MobileNetV1 and ResNet18, further demonstrate its superiority by generating the solutions of much higher sparsity without sacrificing generalization accuracy, which further implies that
8#
發(fā)表于 2025-3-22 23:18:05 | 只看該作者
9#
發(fā)表于 2025-3-23 01:50:42 | 只看該作者
Escaping Saddle Points of Empirical Risk Privately and Scalably via DP-Trust Region Methodevious result on this problem is mainly of theoretical importance and has several issues (. high sample complexity and non-scalable) which hinder its applicability, especially, in big data. To deal with these issues, we propose in this paper a new method called Differentially Private Trust Region, a
10#
發(fā)表于 2025-3-23 05:52:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 00:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通榆县| 得荣县| 射阳县| 利辛县| 玉林市| 昭平县| 平武县| 新竹县| 祁阳县| 栖霞市| 河津市| 新建县| 和龙市| 长宁区| 天门市| 昌都县| 客服| 瓦房店市| 荣成市| 白山市| 星座| 江安县| 汉川市| 阿瓦提县| 信宜市| 延寿县| 罗定市| 西乌珠穆沁旗| 墨竹工卡县| 汝城县| 沧源| 青浦区| 贵港市| 环江| 化德县| 舞钢市| 兴安县| 山东省| 南投县| 察雅县| 江口县|