找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Massih-Reza Amini,Stéphane Canu,Grigorios Tsoumaka Conference p

[復(fù)制鏈接]
查看: 22369|回復(fù): 57
樓主
發(fā)表于 2025-3-21 16:58:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning and Knowledge Discovery in Databases
副標(biāo)題European Conference,
編輯Massih-Reza Amini,Stéphane Canu,Grigorios Tsoumaka
視頻videohttp://file.papertrans.cn/621/620512/620512.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Massih-Reza Amini,Stéphane Canu,Grigorios Tsoumaka Conference p
描述The multi-volume set LNAI 13713 until 13718 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2022, which took place in Grenoble, France, in September 2022..The 236 full papers presented in these proceedings were carefully reviewed and selected from a total of 1060 submissions. In addition, the proceedings include 17 Demo Track contributions...The volumes are organized in topical sections as follows:..Part I:. Clustering and dimensionality reduction; anomaly detection; interpretability and explainability; ranking and recommender systems; transfer and multitask learning; ..Part II: .Networks and graphs; knowledge graphs; social network analysis; graph neural networks; natural language processing and text mining; conversational systems; ..Part III: .Deep learning; robust and adversarial machine learning; generative models; computer vision; meta-learning, neural architecture search; ..Part IV:. Reinforcement learning; multi-agent reinforcement learning; bandits and online learning; active and semi-supervised learning; private and federated learning;..Part V:. Supervised learning; probabilistic inference;
出版日期Conference proceedings 2023
關(guān)鍵詞artificial intelligence; autonomous agents; computer networks; computer security; computer systems; corre
版次1
doihttps://doi.org/10.1007/978-3-031-26412-2
isbn_softcover978-3-031-26411-5
isbn_ebook978-3-031-26412-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Machine Learning and Knowledge Discovery in Databases影響因子(影響力)




書目名稱Machine Learning and Knowledge Discovery in Databases影響因子(影響力)學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases網(wǎng)絡(luò)公開度




書目名稱Machine Learning and Knowledge Discovery in Databases網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases被引頻次




書目名稱Machine Learning and Knowledge Discovery in Databases被引頻次學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases年度引用




書目名稱Machine Learning and Knowledge Discovery in Databases年度引用學(xué)科排名




書目名稱Machine Learning and Knowledge Discovery in Databases讀者反饋




書目名稱Machine Learning and Knowledge Discovery in Databases讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:54:08 | 只看該作者
Multi-Objective Actor-Critics for?Real-Time Bidding in?Display Advertisingering display cost, Return on Investment (ROI), and other influential Key Performance Indicators (KPIs), large ad platforms try to balance the trade-off among various goals in dynamics. To address the challenge, we propose a .ulti-.bjec.ve .ctor-.ritics algorithm based on reinforcement learning (RL)
板凳
發(fā)表于 2025-3-22 04:24:04 | 只看該作者
地板
發(fā)表于 2025-3-22 04:40:54 | 只看該作者
Oracle-SAGE: Planning Ahead in?Graph-Based Deep Reinforcement Learninginput. Where available (such as some robotic control domains), low dimensional vector inputs outperform their image based counterparts, but it is challenging to represent complex dynamic environments in this manner. Relational reinforcement learning instead represents the world as a set of objects a
5#
發(fā)表于 2025-3-22 10:57:21 | 只看該作者
6#
發(fā)表于 2025-3-22 16:31:44 | 只看該作者
State Representation Learning for?Goal-Conditioned Reinforcement Learningdding space where distances between pairs of embedded states correspond to the minimum number of actions needed to transition between them. Compared to previous methods, our approach does not require any domain knowledge, learning from offline and unlabeled data. We show how this representation can
7#
發(fā)表于 2025-3-22 18:49:19 | 只看該作者
8#
發(fā)表于 2025-3-22 22:41:43 | 只看該作者
Imitation Learning with?Sinkhorn Distances experts and learners is crucial in their effectiveness in learning from demonstrations. In this paper, we present tractable solutions by formulating imitation learning as minimization of the Sinkhorn distance between occupancy measures. The formulation combines the valuable properties of optimal tr
9#
發(fā)表于 2025-3-23 01:47:12 | 只看該作者
Safe Exploration Method for?Reinforcement Learning Under Existence of?Disturbance property, we have to take the risk into consideration when we apply those algorithms to safety-critical problems especially in real environments. In this study, we deal with a safe exploration problem in reinforcement learning under the existence of disturbance. We define the safety during learning
10#
發(fā)表于 2025-3-23 08:41:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 14:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
元朗区| 雅江县| 定远县| 辽宁省| 道孚县| 福海县| 乐山市| 安泽县| 莱阳市| 太谷县| 镇江市| 柳河县| 双辽市| 尚志市| 平和县| 滦南县| 廊坊市| 道真| 恭城| 台安县| 白河县| 邵阳县| 五大连池市| 清远市| 长丰县| 聂拉木县| 枣阳市| 东乡族自治县| 望奎县| 金昌市| 河间市| 芦溪县| 贺州市| 藁城市| 新巴尔虎右旗| 陆川县| 西和县| 宁武县| 溧水县| 舞钢市| 临沭县|