找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Hendrik Blockeel,Kristian Kersting,Filip ?elezny Conference pro

[復(fù)制鏈接]
樓主: 誓約
11#
發(fā)表于 2025-3-23 12:08:00 | 只看該作者
12#
發(fā)表于 2025-3-23 15:14:49 | 只看該作者
Regret Bounds for Reinforcement Learning with Policy Advicevisors. We present a reinforcement learning with policy advice (RLPA) algorithm which leverages this input set and learns to use the best policy in the set for the reinforcement learning task at hand. We prove that RLPA has a sub-linear regret of . relative to the best input policy, and that both th
13#
發(fā)表于 2025-3-23 18:28:32 | 只看該作者
Exploiting Multi-step Sample Trajectories for Approximate Value Iterationunction approximators used in such methods typically introduce errors in value estimation which can harm the quality of the learned value functions. We present a new batch-mode, off-policy, approximate value iteration algorithm called Trajectory Fitted Q-Iteration (TFQI). This approach uses the sequ
14#
發(fā)表于 2025-3-23 23:23:05 | 只看該作者
15#
發(fā)表于 2025-3-24 05:53:48 | 只看該作者
16#
發(fā)表于 2025-3-24 06:55:48 | 只看該作者
Iterative Model Refinement of Recommender MDPs Based on Expert Feedbacks review of the policy. We impose a constraint on the parameters of the model for every case where the expert’s recommendation differs from the recommendation of the policy. We demonstrate that consistency with an expert’s feedback leads to non-convex constraints on the model parameters. We refine t
17#
發(fā)表于 2025-3-24 11:37:06 | 只看該作者
18#
發(fā)表于 2025-3-24 16:05:07 | 只看該作者
Continuous Upper Confidence Trees with Polynomial Exploration – Consistencyarch. However, the consistency is only proved in a the case where the action space is finite. We here propose a proof in the case of fully observable Markov Decision Processes with bounded horizon, possibly including infinitely many states, infinite action space and arbitrary stochastic transition k
19#
發(fā)表于 2025-3-24 19:26:57 | 只看該作者
A Lipschitz Exploration-Exploitation Scheme for Bayesian Optimizations field aim to find the optimizer of the function by requesting only a few function evaluations at carefully selected locations. An ideal algorithm should maintain a perfect balance between exploration (probing unexplored areas) and exploitation (focusing on promising areas) within the given evaluat
20#
發(fā)表于 2025-3-25 02:30:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 02:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麻江县| 东平县| 通化市| 兴海县| 临安市| 吉安市| 明水县| 沙洋县| 岗巴县| 喀什市| 澳门| 鸡西市| 苏尼特左旗| 资中县| 洱源县| 白山市| 维西| 白水县| 南江县| 舒城县| 沁源县| 商洛市| 五华县| 镶黄旗| 讷河市| 邯郸县| 祁阳县| 海晏县| 新野县| 申扎县| 秦皇岛市| 宜城市| 南郑县| 兰溪市| 乐业县| 湟中县| 安康市| 双流县| 尚义县| 高邮市| 华阴市|